Алгебра Примеры

Risolvere il sistema di Equations y-3=(x-1)^2 2x+y=5
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 2.1
Заменим все вхождения в на .
Этап 2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Вычтем из .
Этап 2.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Перепишем в виде .
Этап 2.2.2.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.2.1
Применим свойство дистрибутивности.
Этап 2.2.2.1.2.2
Применим свойство дистрибутивности.
Этап 2.2.2.1.2.3
Применим свойство дистрибутивности.
Этап 2.2.2.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.3.1.1
Умножим на .
Этап 2.2.2.1.3.1.2
Перенесем влево от .
Этап 2.2.2.1.3.1.3
Перепишем в виде .
Этап 2.2.2.1.3.1.4
Перепишем в виде .
Этап 2.2.2.1.3.1.5
Умножим на .
Этап 2.2.2.1.3.2
Вычтем из .
Этап 3
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 3.1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 3.2
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Добавим к обеим частям уравнения.
Этап 3.2.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Добавим и .
Этап 3.2.2.2
Добавим и .
Этап 3.3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Вычтем из обеих частей уравнения.
Этап 3.3.2
Вычтем из .
Этап 3.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 3.5
Любой корень из равен .
Этап 3.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 4.1
Заменим все вхождения в на .
Этап 4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Умножим на .
Этап 4.2.1.2
Вычтем из .
Этап 5
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 5.1
Заменим все вхождения в на .
Этап 5.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.2.1.1
Умножим на .
Этап 5.2.1.2
Добавим и .
Этап 6
Решение данной системы — полный набор упорядоченных пар, представляющих собой допустимые решения.
Этап 7
Результат можно представить в различном виде.
В виде точки:
Форма уравнения:
Этап 8