Алгебра Примеры

Risolvere per x логарифм по основанию 7 от 2x^2-2- логарифм по основанию 7 от x+1=1
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 1.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Вынесем множитель из .
Этап 1.2.1.2
Вынесем множитель из .
Этап 1.2.1.3
Вынесем множитель из .
Этап 1.2.2
Перепишем в виде .
Этап 1.2.3
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.3
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Сократим общий множитель.
Этап 1.3.1.2
Разделим на .
Этап 1.3.2
Применим свойство дистрибутивности.
Этап 1.3.3
Умножим на .
Этап 2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Добавим к обеим частям уравнения.
Этап 3.2.2
Добавим и .
Этап 3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Разделим каждый член на .
Этап 3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Сократим общий множитель.
Этап 3.3.2.1.2
Разделим на .
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: