Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2
Избавимся от скобок.
Этап 1.3
НОК единицы и любого выражения есть это выражение.
Этап 2
Этап 2.1
Умножим каждый член на .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Сократим общий множитель .
Этап 2.2.1.1
Сократим общий множитель.
Этап 2.2.1.2
Перепишем это выражение.
Этап 2.3
Упростим правую часть.
Этап 2.3.1
Упростим каждый член.
Этап 2.3.1.1
Применим свойство дистрибутивности.
Этап 2.3.1.2
Перепишем, используя свойство коммутативности умножения.
Этап 2.3.1.3
Перенесем влево от .
Этап 2.3.1.4
Умножим на , сложив экспоненты.
Этап 2.3.1.4.1
Перенесем .
Этап 2.3.1.4.2
Умножим на .
Этап 2.3.1.5
Применим свойство дистрибутивности.
Этап 2.3.1.6
Умножим на .
Этап 2.3.1.7
Умножим на .
Этап 2.3.2
Вычтем из .
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Вычтем из обеих частей уравнения.
Этап 3.3
Вычтем из .
Этап 3.4
Разложим на множители методом группировки
Этап 3.4.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Этап 3.4.1.1
Вынесем множитель из .
Этап 3.4.1.2
Запишем как плюс
Этап 3.4.1.3
Применим свойство дистрибутивности.
Этап 3.4.2
Вынесем наибольший общий делитель из каждой группы.
Этап 3.4.2.1
Сгруппируем первые два члена и последние два члена.
Этап 3.4.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 3.4.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 3.5
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.6
Приравняем к , затем решим относительно .
Этап 3.6.1
Приравняем к .
Этап 3.6.2
Вычтем из обеих частей уравнения.
Этап 3.7
Приравняем к , затем решим относительно .
Этап 3.7.1
Приравняем к .
Этап 3.7.2
Решим относительно .
Этап 3.7.2.1
Добавим к обеим частям уравнения.
Этап 3.7.2.2
Разделим каждый член на и упростим.
Этап 3.7.2.2.1
Разделим каждый член на .
Этап 3.7.2.2.2
Упростим левую часть.
Этап 3.7.2.2.2.1
Сократим общий множитель .
Этап 3.7.2.2.2.1.1
Сократим общий множитель.
Этап 3.7.2.2.2.1.2
Разделим на .
Этап 3.8
Окончательным решением являются все значения, при которых верно.
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: