Алгебра Примеры

Найти обратный элемент y=(x/2)^2
Этап 1
Поменяем переменные местами.
Этап 2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем уравнение в виде .
Этап 2.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 2.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.3.2
Умножим обе части уравнения на .
Этап 2.3.3
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1.1
Сократим общий множитель.
Этап 2.3.3.1.2
Перепишем это выражение.
Этап 2.3.4
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.3.5
Умножим обе части уравнения на .
Этап 2.3.6
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.6.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.6.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.6.1.1.1
Сократим общий множитель.
Этап 2.3.6.1.1.2
Перепишем это выражение.
Этап 2.3.6.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.6.2.1
Умножим на .
Этап 2.3.7
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Заменим на , чтобы получить окончательный ответ.
Этап 4
Проверим, является ли обратной к .
Нажмите для увеличения количества этапов...
Этап 4.1
Область определения обратной функции — это множество значений исходной функции, и наоборот. Найдем область определения и множество значений и и сравним их.
Этап 4.2
Найдем множество значений .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Множество значений ― это множество всех допустимых значений . Используем график, чтобы найти множество значений.
Интервальное представление:
Этап 4.3
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 4.3.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 4.3.2
Область определения ― это все значения , при которых выражение определено.
Этап 4.4
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4.5
Так как область определения представляет множество значений, определяемых уравнением , а множество значений, определяемое уравнениями , представляет область определения , то  — обратная к .
Этап 5