Алгебра Примеры

Risolvere per x логарифм по основанию 6 от x^2-4- логарифм по основанию 6 от 3x+6=0
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 1.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Перепишем в виде .
Этап 1.2.2
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.3
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Вынесем множитель из .
Этап 1.3.1.2
Вынесем множитель из .
Этап 1.3.1.3
Вынесем множитель из .
Этап 1.3.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Сократим общий множитель.
Этап 1.3.2.2
Перепишем это выражение.
Этап 2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и  — положительные вещественные числа и , то эквивалентно .
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Умножим обе части уравнения на .
Этап 3.3
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1.1
Сократим общий множитель.
Этап 3.3.1.1.2
Перепишем это выражение.
Этап 3.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Любое число в степени равно .
Этап 3.3.2.1.2
Умножим на .
Этап 3.4
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Добавим к обеим частям уравнения.
Этап 3.4.2
Добавим и .