Алгебра Примеры

Risolvere per x 5/(4x^2)-1/3=3/(6x^2)
Этап 1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.1
Добавим к обеим частям уравнения.
Этап 1.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Вынесем множитель из .
Этап 1.2.2.2
Сократим общий множитель.
Этап 1.2.2.3
Перепишем это выражение.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Так как содержит и числа, и переменные, НОК можно найти в два этапа. Найдем НОК для числовой части , затем найдем НОК для части с переменной .
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
У есть множители: и .
Этап 2.5
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 2.6
Поскольку не имеет множителей, кроме и .
 — простое число
Этап 2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.8
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.8.1
Умножим на .
Этап 2.8.2
Умножим на .
Этап 2.9
Множители  — , то есть , умноженный сам на себя раз.
встречается раз.
Этап 2.10
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.11
Умножим на .
Этап 2.12
НОК представляет собой произведение числовой части и переменной части.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Вынесем множитель из .
Этап 3.2.2.2
Вынесем множитель из .
Этап 3.2.2.3
Сократим общий множитель.
Этап 3.2.2.4
Перепишем это выражение.
Этап 3.2.3
Объединим и .
Этап 3.2.4
Умножим на .
Этап 3.2.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.5.1
Сократим общий множитель.
Этап 3.2.5.2
Перепишем это выражение.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.1
Вынесем множитель из .
Этап 3.3.1.2.2
Вынесем множитель из .
Этап 3.3.1.2.3
Сократим общий множитель.
Этап 3.3.1.2.4
Перепишем это выражение.
Этап 3.3.1.3
Объединим и .
Этап 3.3.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.4.1
Сократим общий множитель.
Этап 3.3.1.4.2
Перепишем это выражение.
Этап 3.3.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.5.1
Вынесем множитель из .
Этап 3.3.1.5.2
Сократим общий множитель.
Этап 3.3.1.5.3
Перепишем это выражение.
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Перепишем уравнение в виде .
Этап 4.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разделим каждый член на .
Этап 4.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.3.2.1.1
Сократим общий множитель.
Этап 4.3.2.1.2
Разделим на .
Этап 4.4
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.5
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.5.1
Перепишем в виде .
Этап 4.5.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.5.2.1
Перепишем в виде .
Этап 4.5.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.5.3
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.5.3.1
Перепишем в виде .
Этап 4.5.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.6
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 4.6.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.6.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.6.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: