Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 1.2
Упростим числитель.
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.1.1
Вынесем множитель из .
Этап 1.2.1.2
Вынесем множитель из .
Этап 1.2.1.3
Вынесем множитель из .
Этап 1.2.2
Перепишем в виде .
Этап 1.2.3
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.3
Упростим члены.
Этап 1.3.1
Вынесем множитель из .
Этап 1.3.1.1
Вынесем множитель из .
Этап 1.3.1.2
Вынесем множитель из .
Этап 1.3.1.3
Вынесем множитель из .
Этап 1.3.2
Сократим общий множитель .
Этап 1.3.2.1
Сократим общий множитель.
Этап 1.3.2.2
Перепишем это выражение.
Этап 2
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 3
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Умножим обе части уравнения на .
Этап 3.3
Упростим обе части уравнения.
Этап 3.3.1
Упростим левую часть.
Этап 3.3.1.1
Упростим .
Этап 3.3.1.1.1
Сократим общий множитель .
Этап 3.3.1.1.1.1
Сократим общий множитель.
Этап 3.3.1.1.1.2
Перепишем это выражение.
Этап 3.3.1.1.2
Сократим общий множитель .
Этап 3.3.1.1.2.1
Сократим общий множитель.
Этап 3.3.1.1.2.2
Перепишем это выражение.
Этап 3.3.2
Упростим правую часть.
Этап 3.3.2.1
Упростим .
Этап 3.3.2.1.1
Любое число в степени равно .
Этап 3.3.2.1.2
Умножим на .
Этап 3.4
Перенесем все члены без в правую часть уравнения.
Этап 3.4.1
Добавим к обеим частям уравнения.
Этап 3.4.2
Запишем в виде дроби с общим знаменателем.
Этап 3.4.3
Объединим числители над общим знаменателем.
Этап 3.4.4
Добавим и .
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: