Алгебра Примеры

Risolvere per x натуральный логарифм x-7/2+ натуральный логарифм 14=2 натуральный логарифм x
Этап 1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.1
Используем свойства произведения логарифмов: .
Этап 1.2
Применим свойство дистрибутивности.
Этап 1.3
Перенесем влево от .
Этап 1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 1.4.2
Вынесем множитель из .
Этап 1.4.3
Сократим общий множитель.
Этап 1.4.4
Перепишем это выражение.
Этап 1.5
Умножим на .
Этап 2
Упростим путем переноса под логарифм.
Этап 3
Чтобы уравнение было равносильным, аргументы логарифмов с обеих сторон уравнения должны быть равными.
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Изменим порядок выражения.
Нажмите для увеличения количества этапов...
Этап 4.2.1.1.1
Перенесем .
Этап 4.2.1.1.2
Изменим порядок и .
Этап 4.2.1.2
Вынесем множитель из .
Этап 4.2.1.3
Вынесем множитель из .
Этап 4.2.1.4
Перепишем в виде .
Этап 4.2.1.5
Вынесем множитель из .
Этап 4.2.1.6
Вынесем множитель из .
Этап 4.2.2
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Перепишем в виде .
Этап 4.2.2.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 4.2.2.3
Перепишем многочлен.
Этап 4.2.2.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 4.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разделим каждый член на .
Этап 4.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.3.2.2
Разделим на .
Этап 4.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.3.1
Разделим на .
Этап 4.4
Приравняем к .
Этап 4.5
Добавим к обеим частям уравнения.