Введите задачу...
Алгебра Примеры
Этап 1
Вычтем из обеих частей неравенства.
Этап 2
Этап 2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.2
Объединим и .
Этап 2.3
Объединим числители над общим знаменателем.
Этап 2.4
Упростим числитель.
Этап 2.4.1
Применим свойство дистрибутивности.
Этап 2.4.2
Умножим на .
Этап 2.4.3
Изменим порядок членов.
Этап 2.5
Вынесем множитель из .
Этап 2.6
Вынесем множитель из .
Этап 2.7
Вынесем множитель из .
Этап 2.8
Перепишем в виде .
Этап 2.9
Вынесем множитель из .
Этап 2.10
Перепишем в виде .
Этап 2.11
Вынесем знак минуса перед дробью.
Этап 3
Найдем все значения, где выражение переменяет знак с отрицательного на положительный. Для этого приравняем каждый множитель к и решим.
Этап 4
Используем формулу для нахождения корней квадратного уравнения.
Этап 5
Подставим значения , и в формулу для корней квадратного уравнения и решим относительно .
Этап 6
Этап 6.1
Упростим числитель.
Этап 6.1.1
Возведем в степень .
Этап 6.1.2
Умножим .
Этап 6.1.2.1
Умножим на .
Этап 6.1.2.2
Умножим на .
Этап 6.1.3
Вычтем из .
Этап 6.1.4
Перепишем в виде .
Этап 6.1.5
Перепишем в виде .
Этап 6.1.6
Перепишем в виде .
Этап 6.2
Умножим на .
Этап 7
Окончательный ответ является комбинацией обоих решений.
Этап 8
Вычтем из обеих частей уравнения.
Этап 9
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 10
Перепишем в виде .
Этап 11
Этап 11.1
Сначала с помощью положительного значения найдем первое решение.
Этап 11.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 11.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 12
Решим для каждого множителя, чтобы найти значения, при которых выражение абсолютного значения переходит от отрицательного значения к положительному.
Этап 13
Невозможно определить старший коэффициент, так как не многочлен.
Не является многочленом
Этап 14
Поскольку реальные пересечения с осью X отсутствуют и старший коэффициент положителен, концы параболы направлены вверх, и всегда больше .
Нет решения