Алгебра Примеры

Risolvere per x 1/4|x-3|+2<1
Этап 1
Запишем в виде кусочной функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Чтобы определить интервал для первого куска, найдем, на каком участке абсолютное значение неотрицательно.
Этап 1.2
Добавим к обеим частям неравенства.
Этап 1.3
В части, где принимает неотрицательные значения, исключим абсолютное значение.
Этап 1.4
Чтобы определить интервал для второго куска, найдем, на каком участке абсолютное значение отрицательно.
Этап 1.5
Добавим к обеим частям неравенства.
Этап 1.6
В части, где принимает отрицательные значения, исключим абсолютное значение и умножим на .
Этап 1.7
Запишем в виде кусочной функции.
Этап 1.8
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.8.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.8.1.1
Применим свойство дистрибутивности.
Этап 1.8.1.2
Объединим и .
Этап 1.8.1.3
Объединим и .
Этап 1.8.1.4
Вынесем знак минуса перед дробью.
Этап 1.8.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.8.3
Объединим и .
Этап 1.8.4
Объединим числители над общим знаменателем.
Этап 1.8.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.8.5.1
Умножим на .
Этап 1.8.5.2
Добавим и .
Этап 1.9
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.9.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.9.1.1
Применим свойство дистрибутивности.
Этап 1.9.1.2
Умножим на .
Этап 1.9.1.3
Применим свойство дистрибутивности.
Этап 1.9.1.4
Объединим и .
Этап 1.9.1.5
Объединим и .
Этап 1.9.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.9.3
Объединим и .
Этап 1.9.4
Объединим числители над общим знаменателем.
Этап 1.9.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.9.5.1
Умножим на .
Этап 1.9.5.2
Добавим и .
Этап 2
Решим , когда .
Нажмите для увеличения количества этапов...
Этап 2.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Вычтем из обеих частей неравенства.
Этап 2.1.1.2
Запишем в виде дроби с общим знаменателем.
Этап 2.1.1.3
Объединим числители над общим знаменателем.
Этап 2.1.1.4
Вычтем из .
Этап 2.1.1.5
Вынесем знак минуса перед дробью.
Этап 2.1.2
Поскольку выражения в каждой части уравнения имеют одинаковые знаменатели, числители должны быть равны.
Этап 2.2
Найдем пересечение и .
Нет решения
Нет решения
Этап 3
Решим , когда .
Нажмите для увеличения количества этапов...
Этап 3.1
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1.1
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 3.1.1.1
Вычтем из обеих частей неравенства.
Этап 3.1.1.2
Запишем в виде дроби с общим знаменателем.
Этап 3.1.1.3
Объединим числители над общим знаменателем.
Этап 3.1.1.4
Вычтем из .
Этап 3.1.1.5
Вынесем знак минуса перед дробью.
Этап 3.1.2
Поскольку выражения в каждой части уравнения имеют одинаковые знаменатели, числители должны быть равны.
Этап 3.1.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1.3.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 3.1.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 3.1.3.2.2
Разделим на .
Этап 3.1.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.1.3.3.1
Разделим на .
Этап 3.2
Найдем пересечение и .
Нет решения
Нет решения
Этап 4
Найдем объединение решений.
Нет решения