Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.2
Вынесем множитель из .
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Вынесем множитель из .
Этап 1.2.3
Вынесем множитель из .
Этап 1.3
Вынесем множитель из .
Этап 1.3.1
Вынесем множитель из .
Этап 1.3.2
Вынесем множитель из .
Этап 1.3.3
Вынесем множитель из .
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Поскольку не имеет множителей, кроме и .
— простое число
Этап 2.4
У есть множители: и .
Этап 2.5
Простыми множителями являются .
Этап 2.5.1
У есть множители: и .
Этап 2.5.2
У есть множители: и .
Этап 2.6
Умножим .
Этап 2.6.1
Умножим на .
Этап 2.6.2
Умножим на .
Этап 2.7
Множителем является само значение .
встречается раз.
Этап 2.8
Множителем является само значение .
встречается раз.
Этап 2.9
Множителем является само значение .
встречается раз.
Этап 2.10
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.11
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим каждый член.
Этап 3.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.1.2
Сократим общий множитель .
Этап 3.2.1.2.1
Вынесем множитель из .
Этап 3.2.1.2.2
Сократим общий множитель.
Этап 3.2.1.2.3
Перепишем это выражение.
Этап 3.2.1.3
Объединим и .
Этап 3.2.1.4
Сократим общий множитель .
Этап 3.2.1.4.1
Сократим общий множитель.
Этап 3.2.1.4.2
Перепишем это выражение.
Этап 3.2.1.5
Применим свойство дистрибутивности.
Этап 3.2.1.6
Умножим на .
Этап 3.2.1.7
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.1.8
Сократим общий множитель .
Этап 3.2.1.8.1
Вынесем множитель из .
Этап 3.2.1.8.2
Сократим общий множитель.
Этап 3.2.1.8.3
Перепишем это выражение.
Этап 3.2.1.9
Объединим и .
Этап 3.2.1.10
Сократим общий множитель .
Этап 3.2.1.10.1
Вынесем множитель из .
Этап 3.2.1.10.2
Сократим общий множитель.
Этап 3.2.1.10.3
Перепишем это выражение.
Этап 3.2.1.11
Применим свойство дистрибутивности.
Этап 3.2.1.12
Умножим на .
Этап 3.2.2
Упростим путем добавления членов.
Этап 3.2.2.1
Добавим и .
Этап 3.2.2.2
Вычтем из .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.2
Сократим общий множитель .
Этап 3.3.2.1
Сократим общий множитель.
Этап 3.3.2.2
Перепишем это выражение.
Этап 3.3.3
Сократим общий множитель .
Этап 3.3.3.1
Сократим общий множитель.
Этап 3.3.3.2
Перепишем это выражение.
Этап 4
Этап 4.1
Перенесем все члены с в левую часть уравнения.
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Вычтем из .
Этап 4.2
Перенесем все члены без в правую часть уравнения.
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Разделим каждый член на и упростим.
Этап 4.3.1
Разделим каждый член на .
Этап 4.3.2
Упростим левую часть.
Этап 4.3.2.1
Сократим общий множитель .
Этап 4.3.2.1.1
Сократим общий множитель.
Этап 4.3.2.1.2
Разделим на .
Этап 4.3.3
Упростим правую часть.
Этап 4.3.3.1
Разделим на .