Алгебра Примеры

Risolvere la Disuguaglianza per x x(x+12)>(x-4)^2
Этап 1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем.
Этап 1.2
Упростим путем добавления нулей.
Этап 1.3
Применим свойство дистрибутивности.
Этап 1.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Умножим на .
Этап 1.4.2
Перенесем влево от .
Этап 2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем в виде .
Этап 2.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.2.1
Применим свойство дистрибутивности.
Этап 2.2.2
Применим свойство дистрибутивности.
Этап 2.2.3
Применим свойство дистрибутивности.
Этап 2.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Умножим на .
Этап 2.3.1.2
Перенесем влево от .
Этап 2.3.1.3
Умножим на .
Этап 2.3.2
Вычтем из .
Этап 3
Перенесем все члены с в левую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 3.1
Вычтем из обеих частей неравенства.
Этап 3.2
Добавим к обеим частям неравенства.
Этап 3.3
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Вычтем из .
Этап 3.3.2
Добавим и .
Этап 3.4
Добавим и .
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.3.1.1
Вынесем множитель из .
Этап 4.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.3.1.2.1
Вынесем множитель из .
Этап 4.3.1.2.2
Сократим общий множитель.
Этап 4.3.1.2.3
Перепишем это выражение.
Этап 5
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 6