Алгебра Примеры

Risolvere per x x(18-x)=2(9x-32)
Этап 1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.1
Перепишем.
Этап 1.2
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим свойство дистрибутивности.
Этап 1.2.2
Упорядочим.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Перенесем влево от .
Этап 1.2.2.2
Перепишем, используя свойство коммутативности умножения.
Этап 1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Перенесем .
Этап 1.3.2
Умножим на .
Этап 2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1
Применим свойство дистрибутивности.
Этап 2.2
Умножим.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Умножим на .
Этап 2.2.2
Умножим на .
Этап 3
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Вычтем из обеих частей уравнения.
Этап 3.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.2.1
Вычтем из .
Этап 3.2.2
Добавим и .
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.2.2
Разделим на .
Этап 4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.3.1
Разделим на .
Этап 5
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем в виде .
Этап 6.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 7.1
Сначала с помощью положительного значения найдем первое решение.
Этап 7.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 7.3
Полное решение является результатом как положительных, так и отрицательных частей решения.