Алгебра Примеры

Risolvere la Disuguaglianza per x 3(1/4)^(x+1)<192
Этап 1
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1
Разделим каждый член на .
Этап 1.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Сократим общий множитель.
Этап 1.2.1.2
Разделим на .
Этап 1.2.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Применим правило умножения к .
Этап 1.2.2.2
Единица в любой степени равна единице.
Этап 1.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Разделим на .
Этап 2
Перенесем в числитель, используя правило отрицательных степеней .
Этап 3
Сформируем в уравнении эквивалентные выражения с одинаковыми основаниями.
Этап 4
Поскольку основания одинаковы, два выражения равны только в том случае, если равны экспоненты.
Этап 5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.1.1
Применим свойство дистрибутивности.
Этап 5.1.2
Умножим на .
Этап 5.2
Перенесем все члены без в правую часть неравенства.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Добавим к обеим частям неравенства.
Этап 5.2.2
Добавим и .
Этап 5.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 5.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.3.2.2
Разделим на .
Этап 5.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Разделим на .
Этап 6
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 7