Алгебра Примеры

Risolvere la Disuguaglianza per x 4/(5x)+1/10<3/(2x)
Этап 1
Умножим обе части на .
Этап 2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1.1.1
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 2.1.1.1.1
Применим свойство дистрибутивности.
Этап 2.1.1.1.2
Перепишем, используя свойство коммутативности умножения.
Этап 2.1.1.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.1.1.3.1
Вынесем множитель из .
Этап 2.1.1.1.3.2
Вынесем множитель из .
Этап 2.1.1.1.3.3
Сократим общий множитель.
Этап 2.1.1.1.3.4
Перепишем это выражение.
Этап 2.1.1.1.4
Объединим и .
Этап 2.1.1.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.1.2.1
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.1.1.2.1.1
Объединим и .
Этап 2.1.1.2.1.2
Умножим на .
Этап 2.1.1.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.1.2.2.1
Вынесем множитель из .
Этап 2.1.1.2.2.2
Сократим общий множитель.
Этап 2.1.1.2.2.3
Перепишем это выражение.
Этап 2.1.1.3
Изменим порядок и .
Этап 2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.2.1
Вынесем множитель из .
Этап 2.2.1.2.2
Сократим общий множитель.
Этап 2.2.1.2.3
Перепишем это выражение.
Этап 2.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.1.3.1
Сократим общий множитель.
Этап 2.2.1.3.2
Перепишем это выражение.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1.1
Вычтем из обеих частей уравнения.
Этап 3.1.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.1.3
Объединим и .
Этап 3.1.4
Объединим числители над общим знаменателем.
Этап 3.1.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.1.5.1
Умножим на .
Этап 3.1.5.2
Вычтем из .
Этап 3.2
Поскольку выражения в каждой части уравнения имеют одинаковые знаменатели, числители должны быть равны.
Этап 4
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 4.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Разделим каждый член на .
Этап 4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.1.2
Разделим на .
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Разделим на .
Этап 4.3
Область определения ― это все значения , при которых выражение определено.
Этап 5
Используем каждый корень для создания контрольных интервалов.
Этап 6
Выберем тестовое значение из каждого интервала и подставим это значение в исходное неравенство для определения интервалов, удовлетворяющих неравенству.
Нажмите для увеличения количества этапов...
Этап 6.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.1.2
Заменим на в исходном неравенстве.
Этап 6.1.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 6.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.2.2
Заменим на в исходном неравенстве.
Этап 6.2.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 6.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.3.2
Заменим на в исходном неравенстве.
Этап 6.3.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 6.4
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Истина
Ложь
Ложь
Истина
Ложь
Этап 7
Решение состоит из всех истинных интервалов.
Этап 8
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 9