Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Перенесем все члены с переменными в левую часть уравнения.
Этап 1.1.1
Вычтем из обеих частей уравнения.
Этап 1.1.2
Изменим порядок и .
Этап 1.2
Разделим каждый член на , чтобы правая часть была равна единице.
Этап 1.3
Упростим каждый член уравнения, чтобы правая часть была равна . Стандартная форма уравнения эллипса или гиперболы требует, чтобы правая часть уравнения была равна .
Этап 2
Это формула гиперболы. Используем эту формулу для определения вершин и асимптот гиперболы.
Этап 3
Сопоставим параметры гиперболы со значениями в стандартной форме. Переменная представляет сдвиг по оси X от начала координат, — сдвиг по оси Y от начала координат, .
Этап 4
Центр гиперболы имеет вид . Подставим значения и .
Этап 5
Этап 5.1
Найдем расстояние от центра до фокуса гиперболы, используя следующую формулу.
Этап 5.2
Подставим значения и в формулу.
Этап 5.3
Упростим.
Этап 5.3.1
Перепишем в виде .
Этап 5.3.1.1
С помощью запишем в виде .
Этап 5.3.1.2
Применим правило степени и перемножим показатели, .
Этап 5.3.1.3
Объединим и .
Этап 5.3.1.4
Сократим общий множитель .
Этап 5.3.1.4.1
Сократим общий множитель.
Этап 5.3.1.4.2
Перепишем это выражение.
Этап 5.3.1.5
Упростим.
Этап 5.3.2
Перепишем в виде .
Этап 5.3.2.1
С помощью запишем в виде .
Этап 5.3.2.2
Применим правило степени и перемножим показатели, .
Этап 5.3.2.3
Объединим и .
Этап 5.3.2.4
Сократим общий множитель .
Этап 5.3.2.4.1
Сократим общий множитель.
Этап 5.3.2.4.2
Перепишем это выражение.
Этап 5.3.2.5
Упростим.
Этап 5.3.3
Добавим и .
Этап 6
Этап 6.1
Первую вершину гиперболы можно найти, добавив к .
Этап 6.2
Подставим известные значения , и в формулу и упростим.
Этап 6.3
Вторую вершину гиперболы можно найти, вычтя из .
Этап 6.4
Подставим известные значения , и в формулу и упростим.
Этап 6.5
Вершины гиперболы имеют вид . Гиперболы имеют две вершины.
Этап 7
Этап 7.1
Первый фокус гиперболы можно найти, добавив к .
Этап 7.2
Подставим известные значения , и в формулу и упростим.
Этап 7.3
Второй фокус гиперболы можно найти, вычтя из .
Этап 7.4
Подставим известные значения , и в формулу и упростим.
Этап 7.5
Фокусы гиперболы имеют вид . Гиперболы имеют два фокуса.
Этап 8
Этап 8.1
Найдем эксцентриситет по приведенной ниже формуле.
Этап 8.2
Подставим значения и в формулу.
Этап 8.3
Упростим.
Этап 8.3.1
Упростим числитель.
Этап 8.3.1.1
Перепишем в виде .
Этап 8.3.1.1.1
С помощью запишем в виде .
Этап 8.3.1.1.2
Применим правило степени и перемножим показатели, .
Этап 8.3.1.1.3
Объединим и .
Этап 8.3.1.1.4
Сократим общий множитель .
Этап 8.3.1.1.4.1
Сократим общий множитель.
Этап 8.3.1.1.4.2
Перепишем это выражение.
Этап 8.3.1.1.5
Упростим.
Этап 8.3.1.2
Перепишем в виде .
Этап 8.3.1.2.1
С помощью запишем в виде .
Этап 8.3.1.2.2
Применим правило степени и перемножим показатели, .
Этап 8.3.1.2.3
Объединим и .
Этап 8.3.1.2.4
Сократим общий множитель .
Этап 8.3.1.2.4.1
Сократим общий множитель.
Этап 8.3.1.2.4.2
Перепишем это выражение.
Этап 8.3.1.2.5
Упростим.
Этап 8.3.1.3
Добавим и .
Этап 8.3.2
Объединим и под одним знаком корня.
Этап 8.3.3
Сократим выражение, путем отбрасывания общих множителей.
Этап 8.3.3.1
Сократим выражение путем отбрасывания общих множителей.
Этап 8.3.3.1.1
Сократим общий множитель.
Этап 8.3.3.1.2
Перепишем это выражение.
Этап 8.3.3.2
Разделим на .
Этап 9
Этап 9.1
Найдем значение фокального параметра гиперболы по следующей формуле.
Этап 9.2
Подставим значения и в формулу.
Этап 9.3
Упростим.
Этап 9.3.1
Перепишем в виде .
Этап 9.3.1.1
С помощью запишем в виде .
Этап 9.3.1.2
Применим правило степени и перемножим показатели, .
Этап 9.3.1.3
Объединим и .
Этап 9.3.1.4
Сократим общий множитель .
Этап 9.3.1.4.1
Сократим общий множитель.
Этап 9.3.1.4.2
Перепишем это выражение.
Этап 9.3.1.5
Упростим.
Этап 9.3.2
Умножим на .
Этап 9.3.3
Объединим и упростим знаменатель.
Этап 9.3.3.1
Умножим на .
Этап 9.3.3.2
Возведем в степень .
Этап 9.3.3.3
Возведем в степень .
Этап 9.3.3.4
Применим правило степени для объединения показателей.
Этап 9.3.3.5
Добавим и .
Этап 9.3.3.6
Перепишем в виде .
Этап 9.3.3.6.1
С помощью запишем в виде .
Этап 9.3.3.6.2
Применим правило степени и перемножим показатели, .
Этап 9.3.3.6.3
Объединим и .
Этап 9.3.3.6.4
Сократим общий множитель .
Этап 9.3.3.6.4.1
Сократим общий множитель.
Этап 9.3.3.6.4.2
Перепишем это выражение.
Этап 9.3.3.6.5
Упростим.
Этап 9.3.4
Изменим порядок множителей в .
Этап 10
Асимптоты имеют вид , поскольку ветви этой гиперболы направлены влево и вправо.
Этап 11
Этап 11.1
Добавим и .
Этап 11.2
Умножим на .
Этап 12
Этап 12.1
Добавим и .
Этап 12.2
Перепишем в виде .
Этап 13
Эта гипербола имеет две асимптоты.
Этап 14
Эти значения представляются важными для построения графика и анализа гиперболы.
Центр:
Вершины:
Фокусы:
Эксцентриситет:
Фокальный параметр:
Асимптоты: ,
Этап 15