Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Упростим .
Этап 1.1.1
Избавимся от скобок.
Этап 1.1.2
Вычтем из .
Этап 2
Этап 2.1
Перепишем в виде .
Этап 2.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Этап 2.2.1
Применим свойство дистрибутивности.
Этап 2.2.2
Применим свойство дистрибутивности.
Этап 2.2.3
Применим свойство дистрибутивности.
Этап 2.3
Упростим и объединим подобные члены.
Этап 2.3.1
Упростим каждый член.
Этап 2.3.1.1
Умножим на , сложив экспоненты.
Этап 2.3.1.1.1
Применим правило степени для объединения показателей.
Этап 2.3.1.1.2
Добавим и .
Этап 2.3.1.2
Перенесем влево от .
Этап 2.3.1.3
Умножим на .
Этап 2.3.2
Добавим и .
Этап 2.4
Добавим и .
Этап 2.5
Вычтем из .
Этап 2.6
Добавим и .
Этап 2.7
Вынесем множитель из .
Этап 2.7.1
Вынесем множитель из .
Этап 2.7.2
Вынесем множитель из .
Этап 2.7.3
Вынесем множитель из .
Этап 3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 4
Этап 4.1
Приравняем к .
Этап 4.2
Решим относительно .
Этап 4.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.2.2
Упростим .
Этап 4.2.2.1
Перепишем в виде .
Этап 4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2.2.3
Плюс или минус равно .
Этап 5
Этап 5.1
Приравняем к .
Этап 5.2
Решим относительно .
Этап 5.2.1
Вычтем из обеих частей уравнения.
Этап 5.2.2
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.2.3
Упростим .
Этап 5.2.3.1
Перепишем в виде .
Этап 5.2.3.2
Перепишем в виде .
Этап 5.2.3.3
Перепишем в виде .
Этап 5.2.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5.2.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.2.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.2.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Окончательным решением являются все значения, при которых верно.