Алгебра Примеры

Найти обратный элемент f(x)=4x^(2/5)
Этап 1
Запишем в виде уравнения.
Этап 2
Поменяем переменные местами.
Этап 3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Перепишем уравнение в виде .
Этап 3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Разделим каждый член на .
Этап 3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Сократим общий множитель.
Этап 3.2.2.2
Разделим на .
Этап 3.3
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 3.4
Упростим показатель степени.
Нажмите для увеличения количества этапов...
Этап 3.4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.4.1.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1.1.2.1
Сократим общий множитель.
Этап 3.4.1.1.1.2.2
Перепишем это выражение.
Этап 3.4.1.1.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.1.1.1.3.1
Сократим общий множитель.
Этап 3.4.1.1.1.3.2
Перепишем это выражение.
Этап 3.4.1.1.2
Упростим.
Этап 3.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.1
Применим правило умножения к .
Этап 3.4.2.1.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.2.1
Перепишем в виде .
Этап 3.4.2.1.2.2
Применим правило степени и перемножим показатели, .
Этап 3.4.2.1.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.2.3.1
Сократим общий множитель.
Этап 3.4.2.1.2.3.2
Перепишем это выражение.
Этап 3.4.2.1.2.4
Возведем в степень .
Этап 3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 3.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 3.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 3.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4
Заменим на , чтобы получить окончательный ответ.
Этап 5
Проверим, является ли обратной к .
Нажмите для увеличения количества этапов...
Этап 5.1
Область определения обратной функции — это множество значений исходной функции, и наоборот. Найдем область определения и множество значений и и сравним их.
Этап 5.2
Найдем множество значений .
Нажмите для увеличения количества этапов...
Этап 5.2.1
Множество значений ― это множество всех допустимых значений . Используем график, чтобы найти множество значений.
Интервальное представление:
Этап 5.3
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 5.3.2
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 5.3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.3.1
Возьмем указанный корень от обеих частей неравенства, чтобы исключить член со степенью в левой части.
Этап 5.3.3.2
Упростим уравнение.
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.1.1
Вынесем члены из-под знака корня.
Этап 5.3.3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 5.3.3.2.2.1.1
Перепишем в виде .
Этап 5.3.3.2.2.1.2
Вынесем члены из-под знака корня.
Этап 5.3.4
Область определения ― это все значения , при которых выражение определено.
Этап 5.4
Найдем область определения .
Нажмите для увеличения количества этапов...
Этап 5.4.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 5.4.2
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 5.5
Так как область определения представляет множество значений, определяемых уравнением , а множество значений, определяемое уравнениями , представляет область определения , то  — обратная к .
Этап 6