Введите задачу...
Алгебра Примеры
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Поскольку содержит как числа, так и переменные, для нахождения наименьшего общего кратного требуется четыре этапа. Найдем наименьшее общее кратное для числовой, переменной и составной переменной частей. Затем перемножим их.
Этапы поиска НОК для :
1. Найдем НОК для числовой части .
2. Найдем НОК для переменной части .
3. Найдем НОК для составной переменной части .
4. Перемножим все НОК.
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.8
Множителем является само значение .
встречается раз.
Этап 2.9
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.10
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим каждый член.
Этап 3.2.1.1
Сократим общий множитель .
Этап 3.2.1.1.1
Сократим общий множитель.
Этап 3.2.1.1.2
Перепишем это выражение.
Этап 3.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.1.3
Умножим на .
Этап 3.2.1.4
Сократим общий множитель .
Этап 3.2.1.4.1
Вынесем множитель из .
Этап 3.2.1.4.2
Сократим общий множитель.
Этап 3.2.1.4.3
Перепишем это выражение.
Этап 3.2.1.5
Применим свойство дистрибутивности.
Этап 3.2.1.6
Умножим на .
Этап 3.2.1.7
Умножим на .
Этап 3.2.1.8
Применим свойство дистрибутивности.
Этап 3.2.2
Упростим путем добавления членов.
Этап 3.2.2.1
Добавим и .
Этап 3.2.2.2
Объединим противоположные члены в .
Этап 3.2.2.2.1
Вычтем из .
Этап 3.2.2.2.2
Добавим и .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Применим свойство дистрибутивности.
Этап 3.3.2
Упростим выражение.
Этап 3.3.2.1
Умножим на .
Этап 3.3.2.2
Умножим на .
Этап 3.3.2.3
Умножим на .
Этап 4
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Разделим каждый член на и упростим.
Этап 4.2.1
Разделим каждый член на .
Этап 4.2.2
Упростим левую часть.
Этап 4.2.2.1
Сократим общий множитель .
Этап 4.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.1.2
Разделим на .
Этап 4.2.3
Упростим правую часть.
Этап 4.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.4
Упростим .
Этап 4.4.1
Перепишем в виде .
Этап 4.4.2
Умножим на .
Этап 4.4.3
Объединим и упростим знаменатель.
Этап 4.4.3.1
Умножим на .
Этап 4.4.3.2
Возведем в степень .
Этап 4.4.3.3
Возведем в степень .
Этап 4.4.3.4
Применим правило степени для объединения показателей.
Этап 4.4.3.5
Добавим и .
Этап 4.4.3.6
Перепишем в виде .
Этап 4.4.3.6.1
С помощью запишем в виде .
Этап 4.4.3.6.2
Применим правило степени и перемножим показатели, .
Этап 4.4.3.6.3
Объединим и .
Этап 4.4.3.6.4
Сократим общий множитель .
Этап 4.4.3.6.4.1
Сократим общий множитель.
Этап 4.4.3.6.4.2
Перепишем это выражение.
Этап 4.4.3.6.5
Найдем экспоненту.
Этап 4.4.4
Упростим числитель.
Этап 4.4.4.1
Объединим, используя правило умножения для радикалов.
Этап 4.4.4.2
Умножим на .
Этап 4.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: