Алгебра Примеры

Решить через дискриминант 2/p+3/(p+1)=5
Этап 1
Вычтем из обеих частей уравнения.
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
Поскольку содержит как числа, так и переменные, для нахождения наименьшего общего кратного требуется четыре этапа. Найдем наименьшее общее кратное для числовой, переменной и составной переменной частей. Затем перемножим их.
Этапы поиска НОК для :
1. Найдем НОК для числовой части .
2. Найдем НОК для переменной части .
3. Найдем НОК для составной переменной части .
4. Перемножим все НОК.
Этап 2.3
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.4
Число не является простым числом, поскольку оно имеет только один положительный делитель ― само число.
Не является простым
Этап 2.5
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.6
Множителем является само значение .
встречается раз.
Этап 2.7
НОК представляет собой произведение всех простых множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.8
Множителем является само значение .
встречается раз.
Этап 2.9
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.10
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Сократим общий множитель.
Этап 3.2.1.1.2
Перепишем это выражение.
Этап 3.2.1.2
Применим свойство дистрибутивности.
Этап 3.2.1.3
Умножим на .
Этап 3.2.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.4.1
Вынесем множитель из .
Этап 3.2.1.4.2
Сократим общий множитель.
Этап 3.2.1.4.3
Перепишем это выражение.
Этап 3.2.1.5
Применим свойство дистрибутивности.
Этап 3.2.1.6
Умножим на .
Этап 3.2.1.7
Умножим на .
Этап 3.2.1.8
Применим свойство дистрибутивности.
Этап 3.2.2
Упростим путем добавления членов.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Добавим и .
Этап 3.2.2.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.2.2.2.1
Вычтем из .
Этап 3.2.2.2.2
Добавим и .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Применим свойство дистрибутивности.
Этап 3.3.2
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Умножим на .
Этап 3.3.2.2
Умножим на .
Этап 3.3.2.3
Умножим на .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Разделим каждый член на .
Этап 4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.1.2
Разделим на .
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 4.4.1
Перепишем в виде .
Этап 4.4.2
Умножим на .
Этап 4.4.3
Объединим и упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.4.3.1
Умножим на .
Этап 4.4.3.2
Возведем в степень .
Этап 4.4.3.3
Возведем в степень .
Этап 4.4.3.4
Применим правило степени для объединения показателей.
Этап 4.4.3.5
Добавим и .
Этап 4.4.3.6
Перепишем в виде .
Нажмите для увеличения количества этапов...
Этап 4.4.3.6.1
С помощью запишем в виде .
Этап 4.4.3.6.2
Применим правило степени и перемножим показатели, .
Этап 4.4.3.6.3
Объединим и .
Этап 4.4.3.6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.4.3.6.4.1
Сократим общий множитель.
Этап 4.4.3.6.4.2
Перепишем это выражение.
Этап 4.4.3.6.5
Найдем экспоненту.
Этап 4.4.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 4.4.4.1
Объединим, используя правило умножения для радикалов.
Этап 4.4.4.2
Умножим на .
Этап 4.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: