Введите задачу...
Алгебра Примеры
Этап 1
Чтобы избавиться от радикала в левой части неравенства, возведем обе части неравенства в квадрат.
Этап 2
Этап 2.1
С помощью запишем в виде .
Этап 2.2
Упростим левую часть.
Этап 2.2.1
Упростим .
Этап 2.2.1.1
Перемножим экспоненты в .
Этап 2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.1.2
Сократим общий множитель .
Этап 2.2.1.1.2.1
Сократим общий множитель.
Этап 2.2.1.1.2.2
Перепишем это выражение.
Этап 2.2.1.2
Упростим.
Этап 3
Этап 3.1
Вычтем из обеих частей неравенства.
Этап 3.2
Преобразуем неравенство в уравнение.
Этап 3.3
Разложим левую часть уравнения на множители.
Этап 3.3.1
Вынесем множитель из .
Этап 3.3.1.1
Изменим порядок выражения.
Этап 3.3.1.1.1
Перенесем .
Этап 3.3.1.1.2
Изменим порядок и .
Этап 3.3.1.2
Вынесем множитель из .
Этап 3.3.1.3
Вынесем множитель из .
Этап 3.3.1.4
Перепишем в виде .
Этап 3.3.1.5
Вынесем множитель из .
Этап 3.3.1.6
Вынесем множитель из .
Этап 3.3.2
Разложим на множители.
Этап 3.3.2.1
Разложим на множители, используя метод группировки.
Этап 3.3.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 3.3.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 3.3.2.2
Избавимся от ненужных скобок.
Этап 3.4
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 3.5
Приравняем к , затем решим относительно .
Этап 3.5.1
Приравняем к .
Этап 3.5.2
Добавим к обеим частям уравнения.
Этап 3.6
Приравняем к , затем решим относительно .
Этап 3.6.1
Приравняем к .
Этап 3.6.2
Вычтем из обеих частей уравнения.
Этап 3.7
Окончательным решением являются все значения, при которых верно.
Этап 4
Этап 4.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 4.2
Решим относительно .
Этап 4.2.1
Вычтем из обеих частей неравенства.
Этап 4.2.2
Разделим каждый член на и упростим.
Этап 4.2.2.1
Разделим каждый член на . При умножении или делении обеих частей неравенства на отрицательное значение заменим знак неравенства на противоположный.
Этап 4.2.2.2
Упростим левую часть.
Этап 4.2.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.2.2.2.2
Разделим на .
Этап 4.2.2.3
Упростим правую часть.
Этап 4.2.2.3.1
Разделим на .
Этап 4.3
Область определения ― это все значения , при которых выражение определено.
Этап 5
Используем каждый корень для создания контрольных интервалов.
Этап 6
Этап 6.1
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.1.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.1.2
Заменим на в исходном неравенстве.
Этап 6.1.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 6.2
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.2.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.2.2
Заменим на в исходном неравенстве.
Этап 6.2.3
Левая часть не меньше правой части , значит, данное утверждение ложно.
Ложь
Ложь
Этап 6.3
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.3.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.3.2
Заменим на в исходном неравенстве.
Этап 6.3.3
Левая часть меньше правой части , значит, данное утверждение всегда истинно.
Истина
Истина
Этап 6.4
Проверим значение на интервале и посмотрим, делает ли оно верным неравенство.
Этап 6.4.1
Выберем значение на интервале и посмотрим, делает ли это значение верным исходное неравенство.
Этап 6.4.2
Заменим на в исходном неравенстве.
Этап 6.4.3
Левая часть не равна правой части. Это означает, что данное утверждение ложно.
Ложь
Ложь
Этап 6.5
Сравним интервалы, чтобы определить, какие из них удовлетворяют исходному неравенству.
Ложь
Ложь
Истина
Ложь
Ложь
Ложь
Истина
Ложь
Этап 7
Решение состоит из всех истинных интервалов.
Этап 8
Результат можно представить в различном виде.
Форма неравенства:
Интервальное представление:
Этап 9