Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Вынесем множитель из .
Этап 1.1.1
Вынесем множитель из .
Этап 1.1.2
Вынесем множитель из .
Этап 1.1.3
Вынесем множитель из .
Этап 1.2
Вынесем множитель из .
Этап 1.2.1
Вынесем множитель из .
Этап 1.2.2
Вынесем множитель из .
Этап 1.2.3
Вынесем множитель из .
Этап 1.3
Вынесем множитель из .
Этап 1.3.1
Вынесем множитель из .
Этап 1.3.2
Вынесем множитель из .
Этап 1.3.3
Вынесем множитель из .
Этап 1.4
Перепишем в виде .
Этап 1.5
Разложим на множители.
Этап 1.5.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.5.2
Избавимся от ненужных скобок.
Этап 2
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК — это наименьшее положительное число, на которое все числа делятся без остатка.
1. Перечислим простые множители каждого числа.
2. Применим каждый множитель наибольшее количество раз, которое он встречается в любом из чисел.
Этап 2.3
Поскольку не имеет множителей, кроме и .
— простое число
Этап 2.4
Поскольку не имеет множителей, кроме и .
— простое число
Этап 2.5
У есть множители: и .
Этап 2.6
Умножим на .
Этап 2.7
Множителем является само значение .
встречается раз.
Этап 2.8
Множителем является само значение .
встречается раз.
Этап 2.9
Множителем является само значение .
встречается раз.
Этап 2.10
НОК представляет собой произведение всех множителей в максимальной степени, с которой они входят в какой-либо из членов.
Этап 2.11
Наименьшее общее кратное некоторых чисел равно наименьшему числу, на которое делятся эти числа.
Этап 3
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Этап 3.2.1
Упростим каждый член.
Этап 3.2.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.1.2
Сократим общий множитель .
Этап 3.2.1.2.1
Вынесем множитель из .
Этап 3.2.1.2.2
Сократим общий множитель.
Этап 3.2.1.2.3
Перепишем это выражение.
Этап 3.2.1.3
Объединим и .
Этап 3.2.1.4
Сократим общий множитель .
Этап 3.2.1.4.1
Сократим общий множитель.
Этап 3.2.1.4.2
Перепишем это выражение.
Этап 3.2.1.5
Применим свойство дистрибутивности.
Этап 3.2.1.6
Умножим на , сложив экспоненты.
Этап 3.2.1.6.1
Перенесем .
Этап 3.2.1.6.2
Умножим на .
Этап 3.2.1.7
Умножим на .
Этап 3.2.1.8
Сократим общий множитель .
Этап 3.2.1.8.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.1.8.2
Вынесем множитель из .
Этап 3.2.1.8.3
Сократим общий множитель.
Этап 3.2.1.8.4
Перепишем это выражение.
Этап 3.2.1.9
Умножим на .
Этап 3.2.1.10
Применим свойство дистрибутивности.
Этап 3.2.1.11
Умножим на .
Этап 3.2.2
Вычтем из .
Этап 3.3
Упростим правую часть.
Этап 3.3.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.2
Сократим общий множитель .
Этап 3.3.2.1
Вынесем множитель из .
Этап 3.3.2.2
Сократим общий множитель.
Этап 3.3.2.3
Перепишем это выражение.
Этап 3.3.3
Сократим общий множитель .
Этап 3.3.3.1
Вынесем множитель из .
Этап 3.3.3.2
Сократим общий множитель.
Этап 3.3.3.3
Перепишем это выражение.
Этап 4
Этап 4.1
Перенесем все члены с в левую часть уравнения.
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Добавим к обеим частям уравнения.
Этап 4.1.3
Объединим противоположные члены в .
Этап 4.1.3.1
Добавим и .
Этап 4.1.3.2
Добавим и .
Этап 4.1.4
Вычтем из .
Этап 4.2
Перенесем все члены без в правую часть уравнения.
Этап 4.2.1
Вычтем из обеих частей уравнения.
Этап 4.2.2
Вычтем из .
Этап 4.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.4
Упростим .
Этап 4.4.1
Перепишем в виде .
Этап 4.4.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 4.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 5
Исключим решения, которые не делают истинным.