Введите задачу...
Алгебра Примеры
Этап 1
Этап 1.1
Умножим на .
Этап 1.2
Объединим.
Этап 2
Применим свойство дистрибутивности.
Этап 3
Этап 3.1
Сократим общий множитель .
Этап 3.1.1
Вынесем множитель из .
Этап 3.1.2
Сократим общий множитель.
Этап 3.1.3
Перепишем это выражение.
Этап 3.2
Сократим общий множитель .
Этап 3.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.2.2
Вынесем множитель из .
Этап 3.2.3
Сократим общий множитель.
Этап 3.2.4
Перепишем это выражение.
Этап 3.3
Умножим на .
Этап 3.4
Сократим общий множитель .
Этап 3.4.1
Вынесем множитель из .
Этап 3.4.2
Сократим общий множитель.
Этап 3.4.3
Перепишем это выражение.
Этап 3.5
Умножим на , сложив экспоненты.
Этап 3.5.1
Умножим на .
Этап 3.5.1.1
Возведем в степень .
Этап 3.5.1.2
Применим правило степени для объединения показателей.
Этап 3.5.2
Добавим и .
Этап 3.6
Сократим общий множитель .
Этап 3.6.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 3.6.2
Вынесем множитель из .
Этап 3.6.3
Сократим общий множитель.
Этап 3.6.4
Перепишем это выражение.
Этап 3.7
Умножим на .
Этап 3.8
Возведем в степень .
Этап 3.9
Возведем в степень .
Этап 3.10
Применим правило степени для объединения показателей.
Этап 3.11
Добавим и .
Этап 4
Этап 4.1
Вынесем множитель из .
Этап 4.1.1
Вынесем множитель из .
Этап 4.1.2
Вынесем множитель из .
Этап 4.1.3
Вынесем множитель из .
Этап 4.2
Применим свойство дистрибутивности.
Этап 4.3
Умножим на .
Этап 4.4
Перенесем влево от .
Этап 4.5
Перепишем в виде .
Этап 4.6
Разложим на множители, используя метод группировки.
Этап 4.6.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 4.6.2
Запишем разложение на множители, используя данные целые числа.
Этап 5
Этап 5.1
Вынесем множитель из .
Этап 5.1.1
Вынесем множитель из .
Этап 5.1.2
Вынесем множитель из .
Этап 5.1.3
Вынесем множитель из .
Этап 5.2
Сократим общий множитель .
Этап 5.2.1
Сократим общий множитель.
Этап 5.2.2
Перепишем это выражение.