Алгебра Примеры

Risolvere per z 4z-1 = square root of 25z^2-14z+2
Этап 1
Поскольку радикал находится в правой части уравнения, поменяем стороны, чтобы он оказался в левой части.
Этап 2
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в квадрат.
Этап 3
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
С помощью запишем в виде .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 3.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.2.1
Сократим общий множитель.
Этап 3.2.1.1.2.2
Перепишем это выражение.
Этап 3.2.1.2
Упростим.
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Перепишем в виде .
Этап 3.3.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.1.2.1
Применим свойство дистрибутивности.
Этап 3.3.1.2.2
Применим свойство дистрибутивности.
Этап 3.3.1.2.3
Применим свойство дистрибутивности.
Этап 3.3.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.1.3.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.3.1.3.1.2.1
Перенесем .
Этап 3.3.1.3.1.2.2
Умножим на .
Этап 3.3.1.3.1.3
Умножим на .
Этап 3.3.1.3.1.4
Умножим на .
Этап 3.3.1.3.1.5
Умножим на .
Этап 3.3.1.3.1.6
Умножим на .
Этап 3.3.1.3.2
Вычтем из .
Этап 4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.1
Перенесем все члены с в левую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Вычтем из обеих частей уравнения.
Этап 4.1.2
Добавим к обеим частям уравнения.
Этап 4.1.3
Вычтем из .
Этап 4.1.4
Добавим и .
Этап 4.2
Вычтем из обеих частей уравнения.
Этап 4.3
Вычтем из .
Этап 4.4
Разложим на множители, используя правило полных квадратов.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Перепишем в виде .
Этап 4.4.2
Перепишем в виде .
Этап 4.4.3
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 4.4.4
Перепишем многочлен.
Этап 4.4.5
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 4.5
Приравняем к .
Этап 4.6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 4.6.1
Добавим к обеим частям уравнения.
Этап 4.6.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.6.2.1
Разделим каждый член на .
Этап 4.6.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.6.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.6.2.2.1.1
Сократим общий множитель.
Этап 4.6.2.2.1.2
Разделим на .
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: