Алгебра Примеры

Решить через дискриминант 2+3/((2x+1)(2x-1))=3
Этап 1
Перенесем все члены в левую часть уравнения и упростим.
Нажмите для увеличения количества этапов...
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Вычтем из .
Этап 2
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 2.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 2.2
НОК единицы и любого выражения есть это выражение.
Этап 3
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 3.1
Умножим каждый член на .
Этап 3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.2.1.1.1
Применим свойство дистрибутивности.
Этап 3.2.1.1.2
Применим свойство дистрибутивности.
Этап 3.2.1.1.3
Применим свойство дистрибутивности.
Этап 3.2.1.2
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.2.1.2.1
Изменим порядок множителей в членах и .
Этап 3.2.1.2.2
Добавим и .
Этап 3.2.1.2.3
Добавим и .
Этап 3.2.1.3
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.1.3.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.2.1.3.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.2.1.3.2.1
Перенесем .
Этап 3.2.1.3.2.2
Умножим на .
Этап 3.2.1.3.3
Умножим на .
Этап 3.2.1.3.4
Умножим на .
Этап 3.2.1.4
Применим свойство дистрибутивности.
Этап 3.2.1.5
Умножим на .
Этап 3.2.1.6
Умножим на .
Этап 3.2.1.7
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.2.1.7.1
Сократим общий множитель.
Этап 3.2.1.7.2
Перепишем это выражение.
Этап 3.2.2
Добавим и .
Этап 3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 3.3.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Применим свойство дистрибутивности.
Этап 3.3.1.2
Применим свойство дистрибутивности.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Изменим порядок множителей в членах и .
Этап 3.3.2.1.2
Добавим и .
Этап 3.3.2.1.3
Добавим и .
Этап 3.3.2.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 3.3.2.2.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.2.1
Перенесем .
Этап 3.3.2.2.2.2
Умножим на .
Этап 3.3.2.2.3
Умножим на .
Этап 3.3.2.2.4
Умножим на .
Этап 3.3.2.3
Умножим на .
Этап 4
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 4.1
Вычтем из обеих частей уравнения.
Этап 4.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Разделим каждый член на .
Этап 4.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.2.1.1
Сократим общий множитель.
Этап 4.2.2.1.2
Разделим на .
Этап 4.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.3.1
Разделим на .
Этап 4.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 4.4
Любой корень из равен .
Этап 4.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 4.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 4.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 4.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.