Алгебра Примеры

Risolvere per x 3(3x-2)=(x+4)(4-x)
Этап 1
Поскольку находится в правой части уравнения, поменяем стороны так, чтобы оно оказалось в левой части уравнения.
Этап 2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1
Перепишем.
Этап 2.2
Упростим путем добавления нулей.
Этап 2.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.3.1
Применим свойство дистрибутивности.
Этап 2.3.2
Применим свойство дистрибутивности.
Этап 2.3.3
Применим свойство дистрибутивности.
Этап 2.4
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.4.1.1
Перенесем влево от .
Этап 2.4.1.2
Перепишем, используя свойство коммутативности умножения.
Этап 2.4.1.3
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.4.1.3.1
Перенесем .
Этап 2.4.1.3.2
Умножим на .
Этап 2.4.1.4
Умножим на .
Этап 2.4.1.5
Умножим на .
Этап 2.4.2
Вычтем из .
Этап 2.4.3
Добавим и .
Этап 3
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.1
Применим свойство дистрибутивности.
Этап 3.2
Умножим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Умножим на .
Этап 3.2.2
Умножим на .
Этап 4
Вычтем из обеих частей уравнения.
Этап 5
Добавим к обеим частям уравнения.
Этап 6
Добавим и .
Этап 7
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 7.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 7.1.1
Вынесем множитель из .
Этап 7.1.2
Вынесем множитель из .
Этап 7.1.3
Перепишем в виде .
Этап 7.1.4
Вынесем множитель из .
Этап 7.1.5
Вынесем множитель из .
Этап 7.2
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 7.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 7.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 7.2.2
Избавимся от ненужных скобок.
Этап 8
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 9
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 9.1
Приравняем к .
Этап 9.2
Добавим к обеим частям уравнения.
Этап 10
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 10.1
Приравняем к .
Этап 10.2
Вычтем из обеих частей уравнения.
Этап 11
Окончательным решением являются все значения, при которых верно.