Алгебра Примеры

Risolvere per x 72=(8x+3)(8x-3)
Этап 1
Перепишем уравнение в виде .
Этап 2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.1.1
Применим свойство дистрибутивности.
Этап 2.1.2
Применим свойство дистрибутивности.
Этап 2.1.3
Применим свойство дистрибутивности.
Этап 2.2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Объединим противоположные члены в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Изменим порядок множителей в членах и .
Этап 2.2.1.2
Добавим и .
Этап 2.2.1.3
Добавим и .
Этап 2.2.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.2.2.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.2.2.2.1
Перенесем .
Этап 2.2.2.2.2
Умножим на .
Этап 2.2.2.3
Умножим на .
Этап 2.2.2.4
Умножим на .
Этап 3
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.1
Добавим к обеим частям уравнения.
Этап 3.2
Добавим и .
Этап 4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 4.2.1.1
Сократим общий множитель.
Этап 4.2.1.2
Разделим на .
Этап 5
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6
Упростим .
Нажмите для увеличения количества этапов...
Этап 6.1
Перепишем в виде .
Этап 6.2
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Перепишем в виде .
Этап 6.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.3
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Перепишем в виде .
Этап 6.3.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 7
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 7.1
Сначала с помощью положительного значения найдем первое решение.
Этап 7.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 7.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 8
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Форма смешанных чисел: