Алгебра Примеры

Risolvere per x логарифм по основанию 6 от x^2+8=1+ логарифм по основанию 6 от x
Этап 1
Перенесем все члены с логарифмами в левую часть уравнения.
Этап 2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 3
Перепишем в экспоненциальной форме, используя определение логарифма. Если и являются положительными вещественными числами и , то эквивалентно .
Этап 4
С помощью перекрестного умножения избавимся от дроби.
Этап 5
Умножим на .
Этап 6
Вычтем из обеих частей уравнения.
Этап 7
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 7.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 7.2
Запишем разложение на множители, используя данные целые числа.
Этап 8
Упростим .
Нажмите для увеличения количества этапов...
Этап 8.1
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 8.1.1
Применим свойство дистрибутивности.
Этап 8.1.2
Применим свойство дистрибутивности.
Этап 8.1.3
Применим свойство дистрибутивности.
Этап 8.2
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 8.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 8.2.1.1
Умножим на .
Этап 8.2.1.2
Перенесем влево от .
Этап 8.2.1.3
Умножим на .
Этап 8.2.2
Вычтем из .
Этап 9
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 9.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 9.2
Запишем разложение на множители, используя данные целые числа.
Этап 10
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 11
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 11.1
Приравняем к .
Этап 11.2
Добавим к обеим частям уравнения.
Этап 12
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 12.1
Приравняем к .
Этап 12.2
Добавим к обеим частям уравнения.
Этап 13
Окончательным решением являются все значения, при которых верно.