Trigonometria Exemplos

Encontre Onde É Indefinida/Descontínua cos(pi-a)*tan((3pi)/2-a)
Etapa 1
Defina o argumento em como igual a para encontrar onde a expressão está indefinida.
, para qualquer número inteiro
Etapa 2
Resolva .
Toque para ver mais passagens...
Etapa 2.1
Mova todos os termos que não contêm para o lado direito da equação.
Toque para ver mais passagens...
Etapa 2.1.1
Subtraia dos dois lados da equação.
Etapa 2.1.2
Combine os numeradores em relação ao denominador comum.
Etapa 2.1.3
Subtraia de .
Etapa 2.1.4
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.1.4.1
Fatore de .
Etapa 2.1.4.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.1.4.2.1
Fatore de .
Etapa 2.1.4.2.2
Cancele o fator comum.
Etapa 2.1.4.2.3
Reescreva a expressão.
Etapa 2.1.4.2.4
Divida por .
Etapa 2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.2.1
Divida cada termo em por .
Etapa 2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.2.2.2
Divida por .
Etapa 2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.2.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.2.3.1.1
Mova o número negativo do denominador de .
Etapa 2.2.3.1.2
Reescreva como .
Etapa 2.2.3.1.3
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.2.3.1.4
Divida por .
Etapa 3
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
, para qualquer número inteiro
Etapa 4