Insira um problema...
Pré-cálculo Exemplos
Etapa 1
Etapa 1.1
Fatore de .
Etapa 1.1.1
Fatore de .
Etapa 1.1.2
Fatore de .
Etapa 1.1.3
Fatore de .
Etapa 1.2
Fatore usando a regra do quadrado perfeito.
Etapa 1.2.1
Reescreva como .
Etapa 1.2.2
Verifique se o termo do meio é duas vezes o produto dos números ao quadrado no primeiro e no terceiro termos.
Etapa 1.2.3
Reescreva o polinômio.
Etapa 1.2.4
Fatore usando a regra do trinômio quadrado perfeito , em que e .
Etapa 1.3
Fatore de .
Etapa 1.3.1
Fatore de .
Etapa 1.3.2
Fatore de .
Etapa 1.3.3
Fatore de .
Etapa 2
Etapa 2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.3
Como não tem fatores além de e .
é um número primo
Etapa 2.4
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.5
Como não tem fatores além de e .
é um número primo
Etapa 2.6
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.7
Multiplique por .
Etapa 2.8
O fator de é o próprio .
ocorre vez.
Etapa 2.9
Os fatores de são , que é multiplicado por si mesmo por vezes.
ocorre vezes.
Etapa 2.10
O fator de é o próprio .
ocorre vez.
Etapa 2.11
O MMC de é o resultado da multiplicação de todos os fatores pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2.12
O mínimo múltiplo comum de alguns números é o menor número do qual os números são fatores.
Etapa 3
Etapa 3.1
Multiplique cada termo em por .
Etapa 3.2
Simplifique o lado esquerdo.
Etapa 3.2.1
Simplifique cada termo.
Etapa 3.2.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.2.1.2
Cancele o fator comum de .
Etapa 3.2.1.2.1
Fatore de .
Etapa 3.2.1.2.2
Cancele o fator comum.
Etapa 3.2.1.2.3
Reescreva a expressão.
Etapa 3.2.1.3
Combine e .
Etapa 3.2.1.4
Cancele o fator comum de .
Etapa 3.2.1.4.1
Fatore de .
Etapa 3.2.1.4.2
Cancele o fator comum.
Etapa 3.2.1.4.3
Reescreva a expressão.
Etapa 3.2.1.5
Aplique a propriedade distributiva.
Etapa 3.2.1.6
Multiplique por somando os expoentes.
Etapa 3.2.1.6.1
Mova .
Etapa 3.2.1.6.2
Multiplique por .
Etapa 3.2.1.7
Multiplique por .
Etapa 3.2.1.8
Cancele o fator comum de .
Etapa 3.2.1.8.1
Mova o negativo de maior ordem em para o numerador.
Etapa 3.2.1.8.2
Fatore de .
Etapa 3.2.1.8.3
Cancele o fator comum.
Etapa 3.2.1.8.4
Reescreva a expressão.
Etapa 3.2.1.9
Multiplique por .
Etapa 3.3
Simplifique o lado direito.
Etapa 3.3.1
Simplifique os termos.
Etapa 3.3.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 3.3.1.2
Cancele o fator comum de .
Etapa 3.3.1.2.1
Fatore de .
Etapa 3.3.1.2.2
Cancele o fator comum.
Etapa 3.3.1.2.3
Reescreva a expressão.
Etapa 3.3.1.3
Combine e .
Etapa 3.3.1.4
Cancele o fator comum de .
Etapa 3.3.1.4.1
Fatore de .
Etapa 3.3.1.4.2
Cancele o fator comum.
Etapa 3.3.1.4.3
Reescreva a expressão.
Etapa 3.3.1.5
Aplique a propriedade distributiva.
Etapa 3.3.1.6
Multiplique por .
Etapa 3.3.2
Expanda usando o método FOIL.
Etapa 3.3.2.1
Aplique a propriedade distributiva.
Etapa 3.3.2.2
Aplique a propriedade distributiva.
Etapa 3.3.2.3
Aplique a propriedade distributiva.
Etapa 3.3.3
Simplifique e combine termos semelhantes.
Etapa 3.3.3.1
Simplifique cada termo.
Etapa 3.3.3.1.1
Multiplique por somando os expoentes.
Etapa 3.3.3.1.1.1
Mova .
Etapa 3.3.3.1.1.2
Multiplique por .
Etapa 3.3.3.1.2
Multiplique por .
Etapa 3.3.3.1.3
Multiplique por .
Etapa 3.3.3.2
Subtraia de .
Etapa 4
Etapa 4.1
Mova todos os termos que contêm para o lado esquerdo da equação.
Etapa 4.1.1
Subtraia dos dois lados da equação.
Etapa 4.1.2
Some aos dois lados da equação.
Etapa 4.1.3
Subtraia de .
Etapa 4.1.4
Some e .
Etapa 4.2
Subtraia dos dois lados da equação.
Etapa 4.3
Subtraia de .
Etapa 4.4
Fatore usando o método AC.
Etapa 4.4.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 4.4.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 4.5
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 4.6
Defina como igual a e resolva para .
Etapa 4.6.1
Defina como igual a .
Etapa 4.6.2
Some aos dois lados da equação.
Etapa 4.7
Defina como igual a e resolva para .
Etapa 4.7.1
Defina como igual a .
Etapa 4.7.2
Subtraia dos dois lados da equação.
Etapa 4.8
A solução final são todos os valores que tornam verdadeiro.