Cálculo Exemplos

Encontre a Concavidade f(x)=(x+2)/(x^2-3x-10)
Etapa 1
Find the values where the second derivative is equal to .
Toque para ver mais passagens...
Etapa 1.1
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1.1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 1.1.1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.1.2.4.1
Some e .
Etapa 1.1.1.2.4.2
Multiplique por .
Etapa 1.1.1.2.5
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.1.2.9
Multiplique por .
Etapa 1.1.1.2.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.1.2.11
Some e .
Etapa 1.1.1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.1.1.3.1
Aplique a propriedade distributiva.
Etapa 1.1.1.3.2
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.1.1.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.1.3.2.1.1
Multiplique por .
Etapa 1.1.1.3.2.1.2
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 1.1.1.3.2.1.2.1
Aplique a propriedade distributiva.
Etapa 1.1.1.3.2.1.2.2
Aplique a propriedade distributiva.
Etapa 1.1.1.3.2.1.2.3
Aplique a propriedade distributiva.
Etapa 1.1.1.3.2.1.3
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 1.1.1.3.2.1.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.1.1.3.2.1.3.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 1.1.1.3.2.1.3.1.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 1.1.1.3.2.1.3.1.2.1
Mova .
Etapa 1.1.1.3.2.1.3.1.2.2
Multiplique por .
Etapa 1.1.1.3.2.1.3.1.3
Multiplique por .
Etapa 1.1.1.3.2.1.3.1.4
Multiplique por .
Etapa 1.1.1.3.2.1.3.1.5
Multiplique por .
Etapa 1.1.1.3.2.1.3.1.6
Multiplique por .
Etapa 1.1.1.3.2.1.3.2
Subtraia de .
Etapa 1.1.1.3.2.2
Subtraia de .
Etapa 1.1.1.3.2.3
Subtraia de .
Etapa 1.1.1.3.2.4
Some e .
Etapa 1.1.1.3.3
Fatore por agrupamento.
Toque para ver mais passagens...
Etapa 1.1.1.3.3.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Toque para ver mais passagens...
Etapa 1.1.1.3.3.1.1
Fatore de .
Etapa 1.1.1.3.3.1.2
Reescreva como mais
Etapa 1.1.1.3.3.1.3
Aplique a propriedade distributiva.
Etapa 1.1.1.3.3.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 1.1.1.3.3.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 1.1.1.3.3.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 1.1.1.3.3.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 1.1.1.3.4
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 1.1.1.3.4.1
Fatore usando o método AC.
Toque para ver mais passagens...
Etapa 1.1.1.3.4.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 1.1.1.3.4.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 1.1.1.3.4.2
Aplique a regra do produto a .
Etapa 1.1.1.3.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.1.1.3.5.1
Fatore de .
Etapa 1.1.1.3.5.2
Reescreva como .
Etapa 1.1.1.3.5.3
Fatore de .
Etapa 1.1.1.3.5.4
Reescreva como .
Etapa 1.1.1.3.5.5
Eleve à potência de .
Etapa 1.1.1.3.5.6
Eleve à potência de .
Etapa 1.1.1.3.5.7
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.1.1.3.5.8
Some e .
Etapa 1.1.1.3.6
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.1.1.3.6.1
Cancele o fator comum.
Etapa 1.1.1.3.6.2
Reescreva a expressão.
Etapa 1.1.1.3.7
Mova o número negativo para a frente da fração.
Etapa 1.1.2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 1.1.2.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.1.2.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 1.1.2.2.1
Reescreva como .
Etapa 1.1.2.2.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 1.1.2.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 1.1.2.2.2.2
Multiplique por .
Etapa 1.1.2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.1.2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3.3
Substitua todas as ocorrências de por .
Etapa 1.1.2.4
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.2.4.1
Multiplique por .
Etapa 1.1.2.4.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2.4.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.4.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.4.5
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.2.4.5.1
Some e .
Etapa 1.1.2.4.5.2
Multiplique por .
Etapa 1.1.2.4.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.4.7
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.2.4.7.1
Multiplique por .
Etapa 1.1.2.4.7.2
Some e .
Etapa 1.1.2.5
Simplifique.
Toque para ver mais passagens...
Etapa 1.1.2.5.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.1.2.5.2
Combine e .
Etapa 1.1.3
A segunda derivada de com relação a é .
Etapa 1.2
Defina a segunda derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 1.2.1
Defina a segunda derivada como igual a .
Etapa 1.2.2
Defina o numerador como igual a zero.
Etapa 1.2.3
Como , não há soluções.
Nenhuma solução
Nenhuma solução
Nenhuma solução
Etapa 2
Encontre o domínio de .
Toque para ver mais passagens...
Etapa 2.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 2.2
Resolva .
Toque para ver mais passagens...
Etapa 2.2.1
Fatore usando o método AC.
Toque para ver mais passagens...
Etapa 2.2.1.1
Considere a forma . Encontre um par de números inteiros cujo produto é e cuja soma é . Neste caso, cujo produto é e cuja soma é .
Etapa 2.2.1.2
Escreva a forma fatorada usando estes números inteiros.
Etapa 2.2.2
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.2.3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.2.3.1
Defina como igual a .
Etapa 2.2.3.2
Some aos dois lados da equação.
Etapa 2.2.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.2.4.1
Defina como igual a .
Etapa 2.2.4.2
Subtraia dos dois lados da equação.
Etapa 2.2.5
A solução final são todos os valores que tornam verdadeiro.
Etapa 2.3
O domínio consiste em todos os valores de que tornam a expressão definida.
Notação de intervalo:
Notação de construtor de conjuntos:
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 3
Crie intervalos em torno dos valores , em que a segunda derivada é zero ou indefinida.
Etapa 4
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Etapa 4.1
Substitua a variável por na expressão.
Etapa 4.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 4.2.1
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 4.2.1.1
Subtraia de .
Etapa 4.2.1.2
Eleve à potência de .
Etapa 4.2.2
Mova o número negativo para a frente da fração.
Etapa 4.2.3
A resposta final é .
Etapa 4.3
O gráfico tem concavidade para baixo no intervalo porque é negativo.
Concavidade para baixo em , já que é negativo
Concavidade para baixo em , já que é negativo
Etapa 5
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 5.2.1.1
Subtraia de .
Etapa 5.2.1.2
Eleve à potência de .
Etapa 5.2.2
Mova o número negativo para a frente da fração.
Etapa 5.2.3
A resposta final é .
Etapa 5.3
O gráfico tem concavidade para baixo no intervalo porque é negativo.
Concavidade para baixo em , já que é negativo
Concavidade para baixo em , já que é negativo
Etapa 6
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 6.2.1.1
Subtraia de .
Etapa 6.2.1.2
Eleve à potência de .
Etapa 6.2.2
A resposta final é .
Etapa 6.3
O gráfico tem concavidade para cima no intervalo porque é positivo.
Concavidade para cima em , já que é positivo
Concavidade para cima em , já que é positivo
Etapa 7
O gráfico tem concavidade para baixo quando a segunda derivada é negativa e concavidade para cima quando a segunda derivada é positiva.
Concavidade para baixo em , já que é negativo
Concavidade para baixo em , já que é negativo
Concavidade para cima em , já que é positivo
Etapa 8