Cálculo Exemplos

Encontre Onde é Crescente/Decrescente Usando as Derivadas f(x)=x/(x^2+3)
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 1.1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.2.1
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.2
Multiplique por .
Etapa 1.1.2.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.6
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.2.6.1
Some e .
Etapa 1.1.2.6.2
Multiplique por .
Etapa 1.1.3
Eleve à potência de .
Etapa 1.1.4
Eleve à potência de .
Etapa 1.1.5
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.1.6
Some e .
Etapa 1.1.7
Subtraia de .
Etapa 1.1.8
Simplifique.
Toque para ver mais passagens...
Etapa 1.1.8.1
Fatore de .
Etapa 1.1.8.2
Reescreva como .
Etapa 1.1.8.3
Fatore de .
Etapa 1.1.8.4
Reescreva como .
Etapa 1.1.8.5
Mova o número negativo para a frente da fração.
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Defina o numerador como igual a zero.
Etapa 2.3
Resolva a equação para .
Toque para ver mais passagens...
Etapa 2.3.1
Some aos dois lados da equação.
Etapa 2.3.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.3.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.3.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.3.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3
Os valores, que tornam a derivada igual a , são .
Etapa 4
Divida em intervalos separados em torno dos valores de que tornam a derivada ou indefinida.
Etapa 5
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 5.2.1.1
Eleve à potência de .
Etapa 5.2.1.2
Subtraia de .
Etapa 5.2.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 5.2.2.1
Eleve à potência de .
Etapa 5.2.2.2
Some e .
Etapa 5.2.2.3
Eleve à potência de .
Etapa 5.2.3
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 5.2.3.1
Divida por .
Etapa 5.2.3.2
Multiplique por .
Etapa 5.2.4
A resposta final é .
Etapa 5.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 6
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.2.1.1
Elevar a qualquer potência positiva produz .
Etapa 6.2.1.2
Subtraia de .
Etapa 6.2.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 6.2.2.1
Elevar a qualquer potência positiva produz .
Etapa 6.2.2.2
Some e .
Etapa 6.2.2.3
Eleve à potência de .
Etapa 6.2.3
Reduza a expressão cancelando os fatores comuns.
Toque para ver mais passagens...
Etapa 6.2.3.1
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 6.2.3.1.1
Fatore de .
Etapa 6.2.3.1.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 6.2.3.1.2.1
Fatore de .
Etapa 6.2.3.1.2.2
Cancele o fator comum.
Etapa 6.2.3.1.2.3
Reescreva a expressão.
Etapa 6.2.3.2
Mova o número negativo para a frente da fração.
Etapa 6.2.4
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 7
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 7.2.1.1
Eleve à potência de .
Etapa 7.2.1.2
Subtraia de .
Etapa 7.2.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 7.2.2.1
Eleve à potência de .
Etapa 7.2.2.2
Some e .
Etapa 7.2.2.3
Eleve à potência de .
Etapa 7.2.3
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 7.2.3.1
Divida por .
Etapa 7.2.3.2
Multiplique por .
Etapa 7.2.4
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 8
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 9