Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Isole no lado esquerdo da equação.
Etapa 1.1.1
Mova todos os termos que não contêm para o lado direito da equação.
Etapa 1.1.1.1
Subtraia dos dois lados da equação.
Etapa 1.1.1.2
Some aos dois lados da equação.
Etapa 1.1.1.3
Subtraia dos dois lados da equação.
Etapa 1.1.2
Divida cada termo em por e simplifique.
Etapa 1.1.2.1
Divida cada termo em por .
Etapa 1.1.2.2
Simplifique o lado esquerdo.
Etapa 1.1.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 1.1.2.2.2
Divida por .
Etapa 1.1.2.3
Simplifique o lado direito.
Etapa 1.1.2.3.1
Simplifique cada termo.
Etapa 1.1.2.3.1.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 1.1.2.3.1.2
Divida por .
Etapa 1.1.2.3.1.3
Mova o número negativo do denominador de .
Etapa 1.1.2.3.1.4
Reescreva como .
Etapa 1.1.2.3.1.5
Multiplique por .
Etapa 1.1.2.3.1.6
Divida por .
Etapa 1.2
Complete o quadrado de .
Etapa 1.2.1
Use a forma para encontrar os valores de , e .
Etapa 1.2.2
Considere a forma de vértice de uma parábola.
Etapa 1.2.3
Encontre o valor de usando a fórmula .
Etapa 1.2.3.1
Substitua os valores de e na fórmula .
Etapa 1.2.3.2
Simplifique o lado direito.
Etapa 1.2.3.2.1
Multiplique por .
Etapa 1.2.3.2.2
Mova o número negativo para a frente da fração.
Etapa 1.2.4
Encontre o valor de usando a fórmula .
Etapa 1.2.4.1
Substitua os valores de , e na fórmula .
Etapa 1.2.4.2
Simplifique o lado direito.
Etapa 1.2.4.2.1
Simplifique cada termo.
Etapa 1.2.4.2.1.1
Eleve à potência de .
Etapa 1.2.4.2.1.2
Multiplique por .
Etapa 1.2.4.2.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.2.4.2.3
Combine e .
Etapa 1.2.4.2.4
Combine os numeradores em relação ao denominador comum.
Etapa 1.2.4.2.5
Simplifique o numerador.
Etapa 1.2.4.2.5.1
Multiplique por .
Etapa 1.2.4.2.5.2
Subtraia de .
Etapa 1.2.5
Substitua os valores de , e na forma do vértice .
Etapa 1.3
Defina como igual ao novo lado direito.
Etapa 2
Use a forma de vértice, , para determinar os valores de , e .
Etapa 3
Encontre o vértice .
Etapa 4
Etapa 4.1
Encontre a distância do vértice até um foco da parábola usando a seguinte fórmula.
Etapa 4.2
Substitua o valor de na fórmula.
Etapa 4.3
Cancele o fator comum de .
Etapa 4.3.1
Cancele o fator comum.
Etapa 4.3.2
Reescreva a expressão.
Etapa 5
Etapa 5.1
A diretriz de uma parábola é a reta vertical encontrada ao subtrair da coordenada x do vértice se a parábola abrir para a esquerda ou a direita.
Etapa 5.2
Substitua os valores conhecidos de e na fórmula e simplifique.
Etapa 6