Cálculo Exemplos

Encontre os Pontos de Inflexão f(x)=1/12x^4-2x^2+15
Etapa 1
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Combine e .
Etapa 1.1.2.4
Combine e .
Etapa 1.1.2.5
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.1.2.5.1
Fatore de .
Etapa 1.1.2.5.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.1.2.5.2.1
Fatore de .
Etapa 1.1.2.5.2.2
Cancele o fator comum.
Etapa 1.1.2.5.2.3
Reescreva a expressão.
Etapa 1.1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Multiplique por .
Etapa 1.1.4
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.4.2
Some e .
Etapa 1.2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.2.3
Combine e .
Etapa 1.2.2.4
Combine e .
Etapa 1.2.2.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 1.2.2.5.1
Cancele o fator comum.
Etapa 1.2.2.5.2
Divida por .
Etapa 1.2.3
Avalie .
Toque para ver mais passagens...
Etapa 1.2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3.3
Multiplique por .
Etapa 1.3
A segunda derivada de com relação a é .
Etapa 2
Defina a segunda derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a segunda derivada como igual a .
Etapa 2.2
Some aos dois lados da equação.
Etapa 2.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Etapa 2.4
Simplifique .
Toque para ver mais passagens...
Etapa 2.4.1
Reescreva como .
Etapa 2.4.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 2.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3
Encontre os pontos em que a segunda derivada é .
Toque para ver mais passagens...
Etapa 3.1
Substitua em para encontrar o valor de .
Toque para ver mais passagens...
Etapa 3.1.1
Substitua a variável por na expressão.
Etapa 3.1.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.1.2.1.1
Eleve à potência de .
Etapa 3.1.2.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.1.2.1.2.1
Fatore de .
Etapa 3.1.2.1.2.2
Fatore de .
Etapa 3.1.2.1.2.3
Cancele o fator comum.
Etapa 3.1.2.1.2.4
Reescreva a expressão.
Etapa 3.1.2.1.3
Combine e .
Etapa 3.1.2.1.4
Eleve à potência de .
Etapa 3.1.2.1.5
Multiplique por .
Etapa 3.1.2.2
Encontre o denominador comum.
Toque para ver mais passagens...
Etapa 3.1.2.2.1
Escreva como uma fração com denominador .
Etapa 3.1.2.2.2
Multiplique por .
Etapa 3.1.2.2.3
Multiplique por .
Etapa 3.1.2.2.4
Escreva como uma fração com denominador .
Etapa 3.1.2.2.5
Multiplique por .
Etapa 3.1.2.2.6
Multiplique por .
Etapa 3.1.2.3
Combine os numeradores em relação ao denominador comum.
Etapa 3.1.2.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.1.2.4.1
Multiplique por .
Etapa 3.1.2.4.2
Multiplique por .
Etapa 3.1.2.5
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 3.1.2.5.1
Subtraia de .
Etapa 3.1.2.5.2
Some e .
Etapa 3.1.2.6
A resposta final é .
Etapa 3.2
O ponto encontrado ao substituir em é . Ele pode ser um ponto de inflexão.
Etapa 3.3
Substitua em para encontrar o valor de .
Toque para ver mais passagens...
Etapa 3.3.1
Substitua a variável por na expressão.
Etapa 3.3.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 3.3.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.3.2.1.1
Eleve à potência de .
Etapa 3.3.2.1.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.3.2.1.2.1
Fatore de .
Etapa 3.3.2.1.2.2
Fatore de .
Etapa 3.3.2.1.2.3
Cancele o fator comum.
Etapa 3.3.2.1.2.4
Reescreva a expressão.
Etapa 3.3.2.1.3
Combine e .
Etapa 3.3.2.1.4
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 3.3.2.1.4.1
Multiplique por .
Toque para ver mais passagens...
Etapa 3.3.2.1.4.1.1
Eleve à potência de .
Etapa 3.3.2.1.4.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.3.2.1.4.2
Some e .
Etapa 3.3.2.1.5
Eleve à potência de .
Etapa 3.3.2.2
Encontre o denominador comum.
Toque para ver mais passagens...
Etapa 3.3.2.2.1
Escreva como uma fração com denominador .
Etapa 3.3.2.2.2
Multiplique por .
Etapa 3.3.2.2.3
Multiplique por .
Etapa 3.3.2.2.4
Escreva como uma fração com denominador .
Etapa 3.3.2.2.5
Multiplique por .
Etapa 3.3.2.2.6
Multiplique por .
Etapa 3.3.2.3
Combine os numeradores em relação ao denominador comum.
Etapa 3.3.2.4
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 3.3.2.4.1
Multiplique por .
Etapa 3.3.2.4.2
Multiplique por .
Etapa 3.3.2.5
Simplifique somando e subtraindo.
Toque para ver mais passagens...
Etapa 3.3.2.5.1
Subtraia de .
Etapa 3.3.2.5.2
Some e .
Etapa 3.3.2.6
A resposta final é .
Etapa 3.4
O ponto encontrado ao substituir em é . Ele pode ser um ponto de inflexão.
Etapa 3.5
Determine os pontos que poderiam ser de inflexão.
Etapa 4
Divida em intervalos em torno dos pontos que poderiam ser pontos de inflexão.
Etapa 5
Substitua um valor do intervalo na segunda derivada para determinar se está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Eleve à potência de .
Etapa 5.2.2
Subtraia de .
Etapa 5.2.3
A resposta final é .
Etapa 5.3
Em , a segunda derivada é . Por ser positiva, a segunda derivada aumenta no intervalo .
Acréscimo em , pois
Acréscimo em , pois
Etapa 6
Substitua um valor do intervalo na segunda derivada para determinar se está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Elevar a qualquer potência positiva produz .
Etapa 6.2.2
Subtraia de .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a segunda derivada é . Por ser negativa, a segunda derivada diminui no intervalo .
Decréscimo em , pois
Decréscimo em , pois
Etapa 7
Substitua um valor do intervalo na segunda derivada para determinar se está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Eleve à potência de .
Etapa 7.2.2
Subtraia de .
Etapa 7.2.3
A resposta final é .
Etapa 7.3
Em , a segunda derivada é . Por ser positiva, a segunda derivada aumenta no intervalo .
Acréscimo em , pois
Acréscimo em , pois
Etapa 8
An inflection point is a point on a curve at which the concavity changes sign from plus to minus or from minus to plus. The inflection points in this case are .
Etapa 9