Cálculo Exemplos

Encontre Onde é Crescente/Decrescente Usando as Derivadas f(x)=(x^2-3)e^(-x)
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 1.1.2.3
Substitua todas as ocorrências de por .
Etapa 1.1.3
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.3
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.1.3.3.1
Multiplique por .
Etapa 1.1.3.3.2
Mova para a esquerda de .
Etapa 1.1.3.3.3
Reescreva como .
Etapa 1.1.3.4
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.3.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.7
Some e .
Etapa 1.1.4
Simplifique.
Toque para ver mais passagens...
Etapa 1.1.4.1
Aplique a propriedade distributiva.
Etapa 1.1.4.2
Aplique a propriedade distributiva.
Etapa 1.1.4.3
Multiplique por .
Etapa 1.1.4.4
Reordene os termos.
Etapa 1.1.4.5
Reordene os fatores em .
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Fatore o lado esquerdo da equação.
Toque para ver mais passagens...
Etapa 2.2.1
Fatore de .
Toque para ver mais passagens...
Etapa 2.2.1.1
Fatore de .
Etapa 2.2.1.2
Fatore de .
Etapa 2.2.1.3
Fatore de .
Etapa 2.2.1.4
Fatore de .
Etapa 2.2.1.5
Fatore de .
Etapa 2.2.2
Fatore.
Toque para ver mais passagens...
Etapa 2.2.2.1
Fatore por agrupamento.
Toque para ver mais passagens...
Etapa 2.2.2.1.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Toque para ver mais passagens...
Etapa 2.2.2.1.1.1
Fatore de .
Etapa 2.2.2.1.1.2
Reescreva como mais
Etapa 2.2.2.1.1.3
Aplique a propriedade distributiva.
Etapa 2.2.2.1.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 2.2.2.1.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 2.2.2.1.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 2.2.2.1.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 2.2.2.2
Remova os parênteses desnecessários.
Etapa 2.3
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.4.1
Defina como igual a .
Etapa 2.4.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.4.2.1
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 2.4.2.2
Não é possível resolver a equação, porque é indefinida.
Indefinido
Etapa 2.4.2.3
Não há uma solução para
Nenhuma solução
Nenhuma solução
Nenhuma solução
Etapa 2.5
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.5.1
Defina como igual a .
Etapa 2.5.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.5.2.1
Some aos dois lados da equação.
Etapa 2.5.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.5.2.2.1
Divida cada termo em por .
Etapa 2.5.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.5.2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 2.5.2.2.2.2
Divida por .
Etapa 2.5.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.5.2.2.3.1
Divida por .
Etapa 2.6
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.6.1
Defina como igual a .
Etapa 2.6.2
Some aos dois lados da equação.
Etapa 2.7
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
Os valores, que tornam a derivada igual a , são .
Etapa 4
Divida em intervalos separados em torno dos valores de que tornam a derivada ou indefinida.
Etapa 5
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 5.2.1.1
Eleve à potência de .
Etapa 5.2.1.2
Multiplique por .
Etapa 5.2.1.3
Multiplique por .
Etapa 5.2.1.4
Multiplique por .
Etapa 5.2.1.5
Multiplique por .
Etapa 5.2.1.6
Multiplique por .
Etapa 5.2.2
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 5.2.2.1
Subtraia de .
Etapa 5.2.2.2
Some e .
Etapa 5.2.3
A resposta final é .
Etapa 5.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 6
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 6.2.1.1
Um elevado a qualquer potência é um.
Etapa 6.2.1.2
Multiplique por .
Etapa 6.2.1.3
Multiplique por .
Etapa 6.2.1.4
Reescreva a expressão usando a regra do expoente negativo .
Etapa 6.2.1.5
Reescreva como .
Etapa 6.2.1.6
Multiplique por .
Etapa 6.2.1.7
Multiplique por .
Etapa 6.2.1.8
Reescreva a expressão usando a regra do expoente negativo .
Etapa 6.2.1.9
Combine e .
Etapa 6.2.1.10
Multiplique por .
Etapa 6.2.1.11
Reescreva a expressão usando a regra do expoente negativo .
Etapa 6.2.1.12
Combine e .
Etapa 6.2.2
Combine frações.
Toque para ver mais passagens...
Etapa 6.2.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 6.2.2.2
Simplifique somando os números.
Toque para ver mais passagens...
Etapa 6.2.2.2.1
Some e .
Etapa 6.2.2.2.2
Some e .
Etapa 6.2.3
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 7
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 7.2.1.1
Eleve à potência de .
Etapa 7.2.1.2
Multiplique por .
Etapa 7.2.1.3
Multiplique por .
Etapa 7.2.1.4
Reescreva a expressão usando a regra do expoente negativo .
Etapa 7.2.1.5
Combine e .
Etapa 7.2.1.6
Mova o número negativo para a frente da fração.
Etapa 7.2.1.7
Multiplique por .
Etapa 7.2.1.8
Multiplique por .
Etapa 7.2.1.9
Reescreva a expressão usando a regra do expoente negativo .
Etapa 7.2.1.10
Combine e .
Etapa 7.2.1.11
Multiplique por .
Etapa 7.2.1.12
Reescreva a expressão usando a regra do expoente negativo .
Etapa 7.2.1.13
Combine e .
Etapa 7.2.2
Combine frações.
Toque para ver mais passagens...
Etapa 7.2.2.1
Combine os numeradores em relação ao denominador comum.
Etapa 7.2.2.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 7.2.2.2.1
Some e .
Etapa 7.2.2.2.2
Some e .
Etapa 7.2.2.2.3
Mova o número negativo para a frente da fração.
Etapa 7.2.3
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 8
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 9