Cálculo Exemplos

Encontre a Raiz do Valor Quadrático Médio y=x^4 , [-1,1]
,
Etapa 1
A raiz quadrada média (RMS) de uma função em um intervalo especificado é a raiz quadrada da média aritmética dos quadrados dos valores originais.
Etapa 2
Substitua os valores reais na fórmula pela raiz quadrada média de uma função.
Etapa 3
Avalie a integral.
Toque para ver mais passagens...
Etapa 3.1
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 3.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.1.2
Multiplique por .
Etapa 3.2
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 3.3
Substitua e simplifique.
Toque para ver mais passagens...
Etapa 3.3.1
Avalie em e em .
Etapa 3.3.2
Simplifique.
Toque para ver mais passagens...
Etapa 3.3.2.1
Um elevado a qualquer potência é um.
Etapa 3.3.2.2
Multiplique por .
Etapa 3.3.2.3
Eleve à potência de .
Etapa 3.3.2.4
Multiplique por .
Etapa 3.3.2.5
Multiplique por .
Etapa 3.3.2.6
Combine os numeradores em relação ao denominador comum.
Etapa 3.3.2.7
Some e .
Etapa 4
Simplifique a fórmula da raiz quadrada média.
Toque para ver mais passagens...
Etapa 4.1
Multiplique por .
Etapa 4.2
Some e .
Etapa 4.3
Reduza a expressão cancelando os fatores comuns.
Toque para ver mais passagens...
Etapa 4.3.1
Cancele o fator comum.
Etapa 4.3.2
Reescreva a expressão.
Etapa 4.4
Reescreva como .
Etapa 4.5
Qualquer raiz de é .
Etapa 4.6
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 4.6.1
Reescreva como .
Etapa 4.6.2
Elimine os termos abaixo do radical, presumindo que sejam números reais positivos.
Etapa 5