Cálculo Exemplos

Encontre a Antiderivada tan(x)^9sec(x)^4
Etapa 1
Escreva como uma função.
Etapa 2
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 3
Estabeleça a integral para resolver.
Etapa 4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 4.1
Reescreva como mais
Etapa 4.2
Reescreva como .
Etapa 5
Usando a fórmula de Pitágoras, reescreva como .
Etapa 6
Deixe . Depois, , então, . Reescreva usando e .
Toque para ver mais passagens...
Etapa 6.1
Deixe . Encontre .
Toque para ver mais passagens...
Etapa 6.1.1
Diferencie .
Etapa 6.1.2
A derivada de em relação a é .
Etapa 6.2
Reescreva o problema usando e .
Etapa 7
Multiplique .
Etapa 8
Simplifique.
Toque para ver mais passagens...
Etapa 8.1
Multiplique por .
Etapa 8.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 8.2.1
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 8.2.2
Some e .
Etapa 9
Divida a integral única em várias integrais.
Etapa 10
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 11
De acordo com a regra da multiplicação de potências, a integral de com relação a é .
Etapa 12
Simplifique.
Etapa 13
Substitua todas as ocorrências de por .
Etapa 14
A resposta é a primitiva da função .