Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Diferencie.
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2
Avalie .
Etapa 1.1.2.1
Use para reescrever como .
Etapa 1.1.2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.1.2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.2.3
Substitua todas as ocorrências de por .
Etapa 1.1.2.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.7
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.1.2.8
Combine e .
Etapa 1.1.2.9
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.2.10
Simplifique o numerador.
Etapa 1.1.2.10.1
Multiplique por .
Etapa 1.1.2.10.2
Subtraia de .
Etapa 1.1.2.11
Mova o número negativo para a frente da fração.
Etapa 1.1.2.12
Multiplique por .
Etapa 1.1.2.13
Subtraia de .
Etapa 1.1.2.14
Combine e .
Etapa 1.1.2.15
Combine e .
Etapa 1.1.2.16
Combine e .
Etapa 1.1.2.17
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.1.2.18
Fatore de .
Etapa 1.1.2.19
Cancele os fatores comuns.
Etapa 1.1.2.19.1
Fatore de .
Etapa 1.1.2.19.2
Cancele o fator comum.
Etapa 1.1.2.19.3
Reescreva a expressão.
Etapa 1.1.2.20
Mova o número negativo para a frente da fração.
Etapa 1.1.3
Reordene os termos.
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Represente cada lado da equação em um gráfico. A solução é o valor x do ponto de intersecção.
Etapa 3
Etapa 3.1
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 3.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 3.3
Resolva .
Etapa 3.3.1
Para remover o radical no lado esquerdo da equação, eleve ao cubo os dois lados da equação.
Etapa 3.3.2
Simplifique cada lado da equação.
Etapa 3.3.2.1
Use para reescrever como .
Etapa 3.3.2.2
Simplifique o lado esquerdo.
Etapa 3.3.2.2.1
Multiplique os expoentes em .
Etapa 3.3.2.2.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.3.2.2.1.2
Cancele o fator comum de .
Etapa 3.3.2.2.1.2.1
Cancele o fator comum.
Etapa 3.3.2.2.1.2.2
Reescreva a expressão.
Etapa 3.3.2.3
Simplifique o lado direito.
Etapa 3.3.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 3.3.3
Resolva .
Etapa 3.3.3.1
Defina como igual a .
Etapa 3.3.3.2
Resolva .
Etapa 3.3.3.2.1
Subtraia dos dois lados da equação.
Etapa 3.3.3.2.2
Divida cada termo em por e simplifique.
Etapa 3.3.3.2.2.1
Divida cada termo em por .
Etapa 3.3.3.2.2.2
Simplifique o lado esquerdo.
Etapa 3.3.3.2.2.2.1
Dividir dois valores negativos resulta em um valor positivo.
Etapa 3.3.3.2.2.2.2
Divida por .
Etapa 3.3.3.2.2.3
Simplifique o lado direito.
Etapa 3.3.3.2.2.3.1
Divida por .
Etapa 3.3.3.2.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 4
Etapa 4.1
Avalie em .
Etapa 4.1.1
Substitua por .
Etapa 4.1.2
Simplifique.
Etapa 4.1.2.1
Simplifique cada termo.
Etapa 4.1.2.1.1
Um elevado a qualquer potência é um.
Etapa 4.1.2.1.2
Multiplique por .
Etapa 4.1.2.1.3
Subtraia de .
Etapa 4.1.2.1.4
Qualquer raiz de é .
Etapa 4.1.2.2
Some e .
Etapa 4.2
Avalie em .
Etapa 4.2.1
Substitua por .
Etapa 4.2.2
Simplifique.
Etapa 4.2.2.1
Simplifique cada termo.
Etapa 4.2.2.1.1
Reescreva como .
Etapa 4.2.2.1.1.1
Use para reescrever como .
Etapa 4.2.2.1.1.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.2.2.1.1.3
Combine e .
Etapa 4.2.2.1.1.4
Cancele o fator comum de .
Etapa 4.2.2.1.1.4.1
Cancele o fator comum.
Etapa 4.2.2.1.1.4.2
Reescreva a expressão.
Etapa 4.2.2.1.1.5
Avalie o expoente.
Etapa 4.2.2.1.2
Multiplique por .
Etapa 4.2.2.1.3
Subtraia de .
Etapa 4.2.2.1.4
Reescreva como .
Etapa 4.2.2.1.5
Elimine os termos abaixo do radical, presumindo que sejam números reais.
Etapa 4.2.2.2
Some e .
Etapa 4.3
Liste todos os pontos.
Etapa 5