Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.1.2
Diferencie.
Etapa 1.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.4
Simplifique a expressão.
Etapa 1.1.2.4.1
Some e .
Etapa 1.1.2.4.2
Multiplique por .
Etapa 1.1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.1.4
Combine e .
Etapa 1.1.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.6
Simplifique o numerador.
Etapa 1.1.6.1
Multiplique por .
Etapa 1.1.6.2
Subtraia de .
Etapa 1.1.7
Mova o número negativo para a frente da fração.
Etapa 1.1.8
Combine e .
Etapa 1.1.9
Mova para o denominador usando a regra do expoente negativo .
Etapa 1.1.10
Simplifique.
Etapa 1.1.10.1
Aplique a propriedade distributiva.
Etapa 1.1.10.2
Combine os termos.
Etapa 1.1.10.2.1
Combine e .
Etapa 1.1.10.2.2
Mova para o numerador usando a regra do expoente negativo .
Etapa 1.1.10.2.3
Multiplique por somando os expoentes.
Etapa 1.1.10.2.3.1
Multiplique por .
Etapa 1.1.10.2.3.1.1
Eleve à potência de .
Etapa 1.1.10.2.3.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 1.1.10.2.3.2
Escreva como uma fração com um denominador comum.
Etapa 1.1.10.2.3.3
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.10.2.3.4
Subtraia de .
Etapa 1.1.10.2.4
Combine e .
Etapa 1.1.10.2.5
Fatore de .
Etapa 1.1.10.2.6
Cancele os fatores comuns.
Etapa 1.1.10.2.6.1
Fatore de .
Etapa 1.1.10.2.6.2
Cancele o fator comum.
Etapa 1.1.10.2.6.3
Reescreva a expressão.
Etapa 1.1.10.2.7
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.1.10.2.8
Combine e .
Etapa 1.1.10.2.9
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.10.2.10
Mova para a esquerda de .
Etapa 1.1.10.2.11
Some e .
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Encontre o MMC dos termos na equação.
Etapa 2.2.1
Encontrar o MMC de uma lista de valores é o mesmo que encontrar o MMC dos denominadores desses valores.
Etapa 2.2.2
Como contém números e variáveis, há duas etapas para encontrar o MMC. Encontre o MMC da parte numérica 1) e, depois, o da parte variável .
Etapa 2.2.3
O MMC é o menor número positivo pelo qual todos os números se dividem uniformemente.
1. Liste os fatores primos de cada número.
2. Multiplique cada fator pelo maior número de vezes em que ele ocorre em cada número.
Etapa 2.2.4
Como não tem fatores além de e .
é um número primo
Etapa 2.2.5
O número não é primo porque tem apenas um fator positivo, que é ele mesmo.
Não é primo
Etapa 2.2.6
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos números.
Etapa 2.2.7
O MMC de é o resultado da multiplicação de todos os fatores primos pelo maior número de vezes que eles ocorrem em qualquer um dos termos.
Etapa 2.2.8
O MMC de é a parte numérica multiplicada pela parte variável.
Etapa 2.3
Multiplique cada termo em por para eliminar as frações.
Etapa 2.3.1
Multiplique cada termo em por .
Etapa 2.3.2
Simplifique o lado esquerdo.
Etapa 2.3.2.1
Simplifique cada termo.
Etapa 2.3.2.1.1
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.3.2.1.2
Cancele o fator comum de .
Etapa 2.3.2.1.2.1
Cancele o fator comum.
Etapa 2.3.2.1.2.2
Reescreva a expressão.
Etapa 2.3.2.1.3
Multiplique por somando os expoentes.
Etapa 2.3.2.1.3.1
Mova .
Etapa 2.3.2.1.3.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.3.2.1.3.3
Combine os numeradores em relação ao denominador comum.
Etapa 2.3.2.1.3.4
Some e .
Etapa 2.3.2.1.3.5
Divida por .
Etapa 2.3.2.1.4
Simplifique .
Etapa 2.3.2.1.5
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 2.3.2.1.6
Multiplique .
Etapa 2.3.2.1.6.1
Combine e .
Etapa 2.3.2.1.6.2
Multiplique por .
Etapa 2.3.2.1.7
Cancele o fator comum de .
Etapa 2.3.2.1.7.1
Cancele o fator comum.
Etapa 2.3.2.1.7.2
Reescreva a expressão.
Etapa 2.3.3
Simplifique o lado direito.
Etapa 2.3.3.1
Multiplique .
Etapa 2.3.3.1.1
Multiplique por .
Etapa 2.3.3.1.2
Multiplique por .
Etapa 2.4
Resolva a equação.
Etapa 2.4.1
Subtraia dos dois lados da equação.
Etapa 2.4.2
Divida cada termo em por e simplifique.
Etapa 2.4.2.1
Divida cada termo em por .
Etapa 2.4.2.2
Simplifique o lado esquerdo.
Etapa 2.4.2.2.1
Cancele o fator comum de .
Etapa 2.4.2.2.1.1
Cancele o fator comum.
Etapa 2.4.2.2.1.2
Divida por .
Etapa 2.4.2.3
Simplifique o lado direito.
Etapa 2.4.2.3.1
Mova o número negativo para a frente da fração.
Etapa 3
Etapa 3.1
Converta expressões com expoentes fracionários em radicais.
Etapa 3.1.1
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 3.1.2
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 3.1.3
Qualquer número elevado a é a própria base.
Etapa 3.1.4
Qualquer número elevado a é a própria base.
Etapa 3.2
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 3.3
Resolva .
Etapa 3.3.1
Para remover o radical no lado esquerdo da equação, eleve ao quadrado os dois lados da equação.
Etapa 3.3.2
Simplifique cada lado da equação.
Etapa 3.3.2.1
Use para reescrever como .
Etapa 3.3.2.2
Simplifique o lado esquerdo.
Etapa 3.3.2.2.1
Simplifique .
Etapa 3.3.2.2.1.1
Multiplique os expoentes em .
Etapa 3.3.2.2.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.3.2.2.1.1.2
Cancele o fator comum de .
Etapa 3.3.2.2.1.1.2.1
Cancele o fator comum.
Etapa 3.3.2.2.1.1.2.2
Reescreva a expressão.
Etapa 3.3.2.2.1.2
Simplifique.
Etapa 3.3.2.3
Simplifique o lado direito.
Etapa 3.3.2.3.1
Elevar a qualquer potência positiva produz .
Etapa 3.4
Defina o radicando em como menor do que para encontrar onde a expressão está indefinida.
Etapa 3.5
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 4
Etapa 4.1
Avalie em .
Etapa 4.1.1
Substitua por .
Etapa 4.1.2
Simplifique.
Etapa 4.1.2.1
Use a regra da multiplicação de potências para distribuir o expoente.
Etapa 4.1.2.1.1
Aplique a regra do produto a .
Etapa 4.1.2.1.2
Aplique a regra do produto a .
Etapa 4.1.2.2
Reescreva como .
Etapa 4.1.2.3
Avalie o expoente.
Etapa 4.1.2.4
Reescreva como .
Etapa 4.1.2.5
Combine e .
Etapa 4.1.2.6
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.1.2.7
Combine e .
Etapa 4.1.2.8
Combine os numeradores em relação ao denominador comum.
Etapa 4.1.2.9
Simplifique o numerador.
Etapa 4.1.2.9.1
Multiplique por .
Etapa 4.1.2.9.2
Some e .
Etapa 4.1.2.10
Combine.
Etapa 4.1.2.11
Multiplique por somando os expoentes.
Etapa 4.1.2.11.1
Multiplique por .
Etapa 4.1.2.11.1.1
Eleve à potência de .
Etapa 4.1.2.11.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.1.2.11.2
Escreva como uma fração com um denominador comum.
Etapa 4.1.2.11.3
Combine os numeradores em relação ao denominador comum.
Etapa 4.1.2.11.4
Some e .
Etapa 4.1.2.12
Simplifique o numerador.
Etapa 4.1.2.12.1
Reescreva como .
Etapa 4.1.2.12.2
Reescreva como .
Etapa 4.1.2.12.3
Multiplique os expoentes em .
Etapa 4.1.2.12.3.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.1.2.12.3.2
Combine e .
Etapa 4.1.2.12.4
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 4.1.2.12.5
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.1.2.12.6
Combine e .
Etapa 4.1.2.12.7
Combine os numeradores em relação ao denominador comum.
Etapa 4.1.2.12.8
Simplifique o numerador.
Etapa 4.1.2.12.8.1
Multiplique por .
Etapa 4.1.2.12.8.2
Some e .
Etapa 4.2
Avalie em .
Etapa 4.2.1
Substitua por .
Etapa 4.2.2
Simplifique.
Etapa 4.2.2.1
Simplifique a expressão.
Etapa 4.2.2.1.1
Reescreva como .
Etapa 4.2.2.1.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.2.2.2
Cancele o fator comum de .
Etapa 4.2.2.2.1
Cancele o fator comum.
Etapa 4.2.2.2.2
Reescreva a expressão.
Etapa 4.2.2.3
Avalie o expoente.
Etapa 4.2.2.4
Some e .
Etapa 4.2.2.5
Multiplique por .
Etapa 4.3
Liste todos os pontos.
Etapa 5