Cálculo Exemplos

Encontre os Pontos Críticos f(x)=e^(x^3-3x)
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.1.2
Diferencie usando a regra exponencial, que determina que é , em que = .
Etapa 1.1.1.3
Substitua todas as ocorrências de por .
Etapa 1.1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.5
Multiplique por .
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.3.1
Defina como igual a .
Etapa 2.3.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.3.2.1
Obtenha o logaritmo natural dos dois lados da equação para remover a variável do expoente.
Etapa 2.3.2.2
Não é possível resolver a equação, porque é indefinida.
Indefinido
Etapa 2.3.2.3
Não há uma solução para
Nenhuma solução
Nenhuma solução
Nenhuma solução
Etapa 2.4
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.4.1
Defina como igual a .
Etapa 2.4.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.4.2.1
Some aos dois lados da equação.
Etapa 2.4.2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.4.2.2.1
Divida cada termo em por .
Etapa 2.4.2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.4.2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.4.2.2.2.1.1
Cancele o fator comum.
Etapa 2.4.2.2.2.1.2
Divida por .
Etapa 2.4.2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.4.2.2.3.1
Divida por .
Etapa 2.4.2.3
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 2.4.2.4
Qualquer raiz de é .
Etapa 2.4.2.5
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.4.2.5.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.4.2.5.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.4.2.5.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.5
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
Encontre os valores em que a derivada é indefinida.
Toque para ver mais passagens...
Etapa 3.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 4
Avalie em cada valor em que a derivada é ou indefinida.
Toque para ver mais passagens...
Etapa 4.1
Avalie em .
Toque para ver mais passagens...
Etapa 4.1.1
Substitua por .
Etapa 4.1.2
Simplifique.
Toque para ver mais passagens...
Etapa 4.1.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.1.2.1.1
Um elevado a qualquer potência é um.
Etapa 4.1.2.1.2
Multiplique por .
Etapa 4.1.2.2
Subtraia de .
Etapa 4.1.2.3
Reescreva a expressão usando a regra do expoente negativo .
Etapa 4.2
Avalie em .
Toque para ver mais passagens...
Etapa 4.2.1
Substitua por .
Etapa 4.2.2
Simplifique.
Toque para ver mais passagens...
Etapa 4.2.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 4.2.2.1.1
Eleve à potência de .
Etapa 4.2.2.1.2
Multiplique por .
Etapa 4.2.2.2
Some e .
Etapa 4.3
Liste todos os pontos.
Etapa 5