Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Etapa 1.2.1
Cancele o fator comum de .
Etapa 1.2.1.1
Cancele o fator comum.
Etapa 1.2.1.2
Reescreva a expressão.
Etapa 1.2.2
Combine e .
Etapa 1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.4
Reescreva como .
Etapa 1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.6
Multiplique por .
Etapa 1.3
Avalie .
Etapa 1.3.1
Cancele o fator comum de .
Etapa 1.3.1.1
Cancele o fator comum.
Etapa 1.3.1.2
Reescreva a expressão.
Etapa 1.3.2
Multiplique por .
Etapa 1.3.3
Combine e .
Etapa 1.3.4
Combine e .
Etapa 1.3.5
Cancele o fator comum de e .
Etapa 1.3.5.1
Fatore de .
Etapa 1.3.5.2
Cancele os fatores comuns.
Etapa 1.3.5.2.1
Eleve à potência de .
Etapa 1.3.5.2.2
Fatore de .
Etapa 1.3.5.2.3
Cancele o fator comum.
Etapa 1.3.5.2.4
Reescreva a expressão.
Etapa 1.3.5.2.5
Divida por .
Etapa 1.3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.8
Multiplique por .
Etapa 1.4
Simplifique.
Etapa 1.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 1.4.2
Combine os termos.
Etapa 1.4.2.1
Combine e .
Etapa 1.4.2.2
Mova o número negativo para a frente da fração.
Etapa 2
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Reescreva como .
Etapa 2.2.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.2.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3.3
Substitua todas as ocorrências de por .
Etapa 2.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.5
Multiplique os expoentes em .
Etapa 2.2.5.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.2.5.2
Multiplique por .
Etapa 2.2.6
Multiplique por .
Etapa 2.2.7
Eleve à potência de .
Etapa 2.2.8
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.2.9
Subtraia de .
Etapa 2.2.10
Multiplique por .
Etapa 2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4
Simplifique.
Etapa 2.4.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 2.4.2
Combine os termos.
Etapa 2.4.2.1
Combine e .
Etapa 2.4.2.2
Some e .
Etapa 3
Etapa 3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2
Aplique regras básicas de expoentes.
Etapa 3.2.1
Reescreva como .
Etapa 3.2.2
Multiplique os expoentes em .
Etapa 3.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 3.2.2.2
Multiplique por .
Etapa 3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4
Multiplique por .
Etapa 3.5
Simplifique.
Etapa 3.5.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 3.5.2
Combine os termos.
Etapa 3.5.2.1
Combine e .
Etapa 3.5.2.2
Mova o número negativo para a frente da fração.
Etapa 4
Etapa 4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.2
Aplique regras básicas de expoentes.
Etapa 4.2.1
Reescreva como .
Etapa 4.2.2
Multiplique os expoentes em .
Etapa 4.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.2.2.2
Multiplique por .
Etapa 4.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.4
Multiplique por .
Etapa 4.5
Simplifique.
Etapa 4.5.1
Reescreva a expressão usando a regra do expoente negativo .
Etapa 4.5.2
Combine e .
Etapa 5
A quarta derivada de com relação a é .