Cálculo Exemplos

Ermittle die Fourth-Ableitung y=5x^7-4x^6+7x^4-12x^3+2x-5
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Multiplique por .
Etapa 1.3
Avalie .
Toque para ver mais passagens...
Etapa 1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.3.3
Multiplique por .
Etapa 1.4
Avalie .
Toque para ver mais passagens...
Etapa 1.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.4.3
Multiplique por .
Etapa 1.5
Avalie .
Toque para ver mais passagens...
Etapa 1.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.5.3
Multiplique por .
Etapa 1.6
Avalie .
Toque para ver mais passagens...
Etapa 1.6.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.6.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.6.3
Multiplique por .
Etapa 1.7
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.7.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.7.2
Some e .
Etapa 2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Avalie .
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.3
Multiplique por .
Etapa 2.4
Avalie .
Toque para ver mais passagens...
Etapa 2.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.4.3
Multiplique por .
Etapa 2.5
Avalie .
Toque para ver mais passagens...
Etapa 2.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.5.3
Multiplique por .
Etapa 2.6
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 2.6.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.6.2
Some e .
Etapa 3
Encontre a terceira derivada.
Toque para ver mais passagens...
Etapa 3.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.2
Avalie .
Toque para ver mais passagens...
Etapa 3.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.2.3
Multiplique por .
Etapa 3.3
Avalie .
Toque para ver mais passagens...
Etapa 3.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.3.3
Multiplique por .
Etapa 3.4
Avalie .
Toque para ver mais passagens...
Etapa 3.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.4.3
Multiplique por .
Etapa 3.5
Avalie .
Toque para ver mais passagens...
Etapa 3.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.5.3
Multiplique por .
Etapa 4
Encontre a quarta derivada.
Toque para ver mais passagens...
Etapa 4.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.2
Avalie .
Toque para ver mais passagens...
Etapa 4.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.2.3
Multiplique por .
Etapa 4.3
Avalie .
Toque para ver mais passagens...
Etapa 4.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.3.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.3.3
Multiplique por .
Etapa 4.4
Avalie .
Toque para ver mais passagens...
Etapa 4.4.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.4.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.4.3
Multiplique por .
Etapa 4.5
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 4.5.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.5.2
Some e .