Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2
A derivada de em relação a é .
Etapa 1.1.3
Substitua todas as ocorrências de por .
Etapa 1.2
Diferencie.
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.4
Simplifique a expressão.
Etapa 1.2.4.1
Some e .
Etapa 1.2.4.2
Multiplique por .
Etapa 2
Etapa 2.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.3
Substitua todas as ocorrências de por .
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
A derivada de em relação a é .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Eleve à potência de .
Etapa 2.4
Eleve à potência de .
Etapa 2.5
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.6
Some e .
Etapa 2.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.10
Simplifique a expressão.
Etapa 2.10.1
Some e .
Etapa 2.10.2
Multiplique por .
Etapa 3
Etapa 3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.2
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 3.3
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.3.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.3.2
A derivada de em relação a é .
Etapa 3.3.3
Substitua todas as ocorrências de por .
Etapa 3.4
Multiplique por somando os expoentes.
Etapa 3.4.1
Mova .
Etapa 3.4.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.4.3
Some e .
Etapa 3.5
Diferencie.
Etapa 3.5.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.5.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.5.4
Simplifique a expressão.
Etapa 3.5.4.1
Some e .
Etapa 3.5.4.2
Multiplique por .
Etapa 3.6
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.6.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.6.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.6.3
Substitua todas as ocorrências de por .
Etapa 3.7
Mova para a esquerda de .
Etapa 3.8
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 3.8.1
Para aplicar a regra da cadeia, defina como .
Etapa 3.8.2
A derivada de em relação a é .
Etapa 3.8.3
Substitua todas as ocorrências de por .
Etapa 3.9
Eleve à potência de .
Etapa 3.10
Eleve à potência de .
Etapa 3.11
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.12
Some e .
Etapa 3.13
Eleve à potência de .
Etapa 3.14
Eleve à potência de .
Etapa 3.15
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 3.16
Some e .
Etapa 3.17
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 3.18
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 3.19
Como é constante em relação a , a derivada de em relação a é .
Etapa 3.20
Simplifique a expressão.
Etapa 3.20.1
Some e .
Etapa 3.20.2
Multiplique por .
Etapa 3.21
Simplifique.
Etapa 3.21.1
Aplique a propriedade distributiva.
Etapa 3.21.2
Multiplique por .
Etapa 3.21.3
Reordene os termos.