Cálculo Exemplos

Ermittle die Fourth-Ableitung f(x)=(x-6)(4x+4)
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.4
Multiplique por .
Etapa 1.2.5
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.6
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.2.6.1
Some e .
Etapa 1.2.6.2
Mova para a esquerda de .
Etapa 1.2.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.10
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.2.10.1
Some e .
Etapa 1.2.10.2
Multiplique por .
Etapa 1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Aplique a propriedade distributiva.
Etapa 1.3.2
Combine os termos.
Toque para ver mais passagens...
Etapa 1.3.2.1
Multiplique por .
Etapa 1.3.2.2
Some e .
Etapa 1.3.2.3
Some e .
Etapa 2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.2
Avalie .
Toque para ver mais passagens...
Etapa 2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Multiplique por .
Etapa 2.3
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 2.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.2
Some e .
Etapa 3
Como é constante em relação a , a derivada de em relação a é .
Etapa 4
Como é constante em relação a , a derivada de em relação a é .
Etapa 5
A quarta derivada de com relação a é .