Cálculo Exemplos

Encontre a Concavidade ((x-1)^2)/(x^2+1)
Etapa 1
Escreva como uma função.
Etapa 2
Find the values where the second derivative is equal to .
Toque para ver mais passagens...
Etapa 2.1
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 2.1.1.1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 2.1.1.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.1.1.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.1.2.3
Substitua todas as ocorrências de por .
Etapa 2.1.1.3
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.1.3.1
Mova para a esquerda de .
Etapa 2.1.1.3.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.1.3.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.1.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.1.3.5
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.1.1.3.5.1
Some e .
Etapa 2.1.1.3.5.2
Multiplique por .
Etapa 2.1.1.3.6
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.1.3.7
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.1.3.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.1.3.9
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.1.1.3.9.1
Some e .
Etapa 2.1.1.3.9.2
Multiplique por .
Etapa 2.1.1.4
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.1.4.1
Aplique a propriedade distributiva.
Etapa 2.1.1.4.2
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.1
Multiplique por .
Etapa 2.1.1.4.2.1.2
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.2.1
Aplique a propriedade distributiva.
Etapa 2.1.1.4.2.1.2.2
Aplique a propriedade distributiva.
Etapa 2.1.1.4.2.1.2.3
Aplique a propriedade distributiva.
Etapa 2.1.1.4.2.1.3
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.3.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.3.1.1
Mova .
Etapa 2.1.1.4.2.1.3.1.2
Multiplique por .
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.3.1.2.1
Eleve à potência de .
Etapa 2.1.1.4.2.1.3.1.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.1.4.2.1.3.1.3
Some e .
Etapa 2.1.1.4.2.1.3.2
Multiplique por .
Etapa 2.1.1.4.2.1.3.3
Multiplique por .
Etapa 2.1.1.4.2.1.4
Reescreva como .
Etapa 2.1.1.4.2.1.5
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.5.1
Aplique a propriedade distributiva.
Etapa 2.1.1.4.2.1.5.2
Aplique a propriedade distributiva.
Etapa 2.1.1.4.2.1.5.3
Aplique a propriedade distributiva.
Etapa 2.1.1.4.2.1.6
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.6.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.6.1.1
Multiplique por .
Etapa 2.1.1.4.2.1.6.1.2
Mova para a esquerda de .
Etapa 2.1.1.4.2.1.6.1.3
Reescreva como .
Etapa 2.1.1.4.2.1.6.1.4
Reescreva como .
Etapa 2.1.1.4.2.1.6.1.5
Multiplique por .
Etapa 2.1.1.4.2.1.6.2
Subtraia de .
Etapa 2.1.1.4.2.1.7
Aplique a propriedade distributiva.
Etapa 2.1.1.4.2.1.8
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.8.1
Multiplique por .
Etapa 2.1.1.4.2.1.8.2
Multiplique por .
Etapa 2.1.1.4.2.1.9
Aplique a propriedade distributiva.
Etapa 2.1.1.4.2.1.10
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.10.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.10.1.1
Mova .
Etapa 2.1.1.4.2.1.10.1.2
Multiplique por .
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.10.1.2.1
Eleve à potência de .
Etapa 2.1.1.4.2.1.10.1.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.1.4.2.1.10.1.3
Some e .
Etapa 2.1.1.4.2.1.10.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.1.4.2.1.10.2.1
Mova .
Etapa 2.1.1.4.2.1.10.2.2
Multiplique por .
Etapa 2.1.1.4.2.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 2.1.1.4.2.2.1
Subtraia de .
Etapa 2.1.1.4.2.2.2
Some e .
Etapa 2.1.1.4.2.2.3
Subtraia de .
Etapa 2.1.1.4.2.2.4
Some e .
Etapa 2.1.1.4.2.3
Some e .
Etapa 2.1.1.4.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.1.1.4.3.1
Fatore de .
Toque para ver mais passagens...
Etapa 2.1.1.4.3.1.1
Fatore de .
Etapa 2.1.1.4.3.1.2
Fatore de .
Etapa 2.1.1.4.3.1.3
Fatore de .
Etapa 2.1.1.4.3.2
Reescreva como .
Etapa 2.1.1.4.3.3
Como os dois termos são quadrados perfeitos, fatore usando a fórmula da diferença de quadrados, em que e .
Etapa 2.1.2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2.2
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 2.1.2.3
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.1.2.3.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.1.2.3.2
Multiplique por .
Etapa 2.1.2.4
Diferencie usando a regra do produto, que determina que é , em que e .
Etapa 2.1.2.5
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.2.5.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2.5.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.2.5.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2.5.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.1.2.5.4.1
Some e .
Etapa 2.1.2.5.4.2
Multiplique por .
Etapa 2.1.2.5.5
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2.5.6
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.2.5.7
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2.5.8
Simplifique somando os termos.
Toque para ver mais passagens...
Etapa 2.1.2.5.8.1
Some e .
Etapa 2.1.2.5.8.2
Multiplique por .
Etapa 2.1.2.5.8.3
Some e .
Etapa 2.1.2.5.8.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.1.2.5.8.4.1
Subtraia de .
Etapa 2.1.2.5.8.4.2
Some e .
Etapa 2.1.2.5.8.4.3
Mova para a esquerda de .
Etapa 2.1.2.6
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.1.2.6.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.1.2.6.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.2.6.3
Substitua todas as ocorrências de por .
Etapa 2.1.2.7
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.2.7.1
Multiplique por .
Etapa 2.1.2.7.2
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2.7.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.2.7.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2.7.5
Combine frações.
Toque para ver mais passagens...
Etapa 2.1.2.7.5.1
Some e .
Etapa 2.1.2.7.5.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.1.2.7.5.2.1
Mova para a esquerda de .
Etapa 2.1.2.7.5.2.2
Multiplique por .
Etapa 2.1.2.7.5.3
Combine e .
Etapa 2.1.2.8
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.2.8.1
Aplique a propriedade distributiva.
Etapa 2.1.2.8.2
Aplique a propriedade distributiva.
Etapa 2.1.2.8.3
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.1
Reescreva como .
Etapa 2.1.2.8.4.1.2
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.2.1
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.2.2
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.2.3
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.3
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.3.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.3.1.1.1
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.2.8.4.1.3.1.1.2
Some e .
Etapa 2.1.2.8.4.1.3.1.2
Multiplique por .
Etapa 2.1.2.8.4.1.3.1.3
Multiplique por .
Etapa 2.1.2.8.4.1.3.1.4
Multiplique por .
Etapa 2.1.2.8.4.1.3.2
Some e .
Etapa 2.1.2.8.4.1.4
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.5
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.5.1
Multiplique por .
Etapa 2.1.2.8.4.1.5.2
Multiplique por .
Etapa 2.1.2.8.4.1.6
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.7
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.7.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.7.1.1
Mova .
Etapa 2.1.2.8.4.1.7.1.2
Multiplique por .
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.7.1.2.1
Eleve à potência de .
Etapa 2.1.2.8.4.1.7.1.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.2.8.4.1.7.1.3
Some e .
Etapa 2.1.2.8.4.1.7.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.7.2.1
Mova .
Etapa 2.1.2.8.4.1.7.2.2
Multiplique por .
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.7.2.2.1
Eleve à potência de .
Etapa 2.1.2.8.4.1.7.2.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.2.8.4.1.7.2.3
Some e .
Etapa 2.1.2.8.4.1.8
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.9
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.9.1
Multiplique por .
Etapa 2.1.2.8.4.1.9.2
Multiplique por .
Etapa 2.1.2.8.4.1.9.3
Multiplique por .
Etapa 2.1.2.8.4.1.10
Multiplique por .
Etapa 2.1.2.8.4.1.11
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.11.1
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.11.2
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.11.3
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.12
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.12.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.12.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.12.1.1.1
Mova .
Etapa 2.1.2.8.4.1.12.1.1.2
Multiplique por .
Etapa 2.1.2.8.4.1.12.1.2
Multiplique por .
Etapa 2.1.2.8.4.1.12.1.3
Multiplique por .
Etapa 2.1.2.8.4.1.12.2
Subtraia de .
Etapa 2.1.2.8.4.1.12.3
Some e .
Etapa 2.1.2.8.4.1.13
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.13.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.13.1.1
Multiplique por .
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.13.1.1.1
Eleve à potência de .
Etapa 2.1.2.8.4.1.13.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.2.8.4.1.13.1.2
Some e .
Etapa 2.1.2.8.4.1.13.2
Multiplique por .
Etapa 2.1.2.8.4.1.14
Expanda usando o método FOIL.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.14.1
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.14.2
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.14.3
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.15
Simplifique e combine termos semelhantes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.15.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.15.1.1
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.15.1.1.1
Mova .
Etapa 2.1.2.8.4.1.15.1.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.2.8.4.1.15.1.1.3
Some e .
Etapa 2.1.2.8.4.1.15.1.2
Multiplique por somando os expoentes.
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.15.1.2.1
Mova .
Etapa 2.1.2.8.4.1.15.1.2.2
Multiplique por .
Toque para ver mais passagens...
Etapa 2.1.2.8.4.1.15.1.2.2.1
Eleve à potência de .
Etapa 2.1.2.8.4.1.15.1.2.2.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 2.1.2.8.4.1.15.1.2.3
Some e .
Etapa 2.1.2.8.4.1.15.2
Some e .
Etapa 2.1.2.8.4.1.15.3
Some e .
Etapa 2.1.2.8.4.1.16
Aplique a propriedade distributiva.
Etapa 2.1.2.8.4.1.17
Multiplique por .
Etapa 2.1.2.8.4.1.18
Multiplique por .
Etapa 2.1.2.8.4.2
Subtraia de .
Etapa 2.1.2.8.4.3
Some e .
Etapa 2.1.2.8.5
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 2.1.2.8.5.1
Fatore de .
Toque para ver mais passagens...
Etapa 2.1.2.8.5.1.1
Fatore de .
Etapa 2.1.2.8.5.1.2
Fatore de .
Etapa 2.1.2.8.5.1.3
Fatore de .
Etapa 2.1.2.8.5.1.4
Fatore de .
Etapa 2.1.2.8.5.1.5
Fatore de .
Etapa 2.1.2.8.5.2
Reescreva como .
Etapa 2.1.2.8.5.3
Deixe . Substitua em todas as ocorrências de .
Etapa 2.1.2.8.5.4
Fatore por agrupamento.
Toque para ver mais passagens...
Etapa 2.1.2.8.5.4.1
Para um polinômio da forma , reescreva o termo do meio como uma soma de dois termos cujo produto é e cuja soma é .
Toque para ver mais passagens...
Etapa 2.1.2.8.5.4.1.1
Fatore de .
Etapa 2.1.2.8.5.4.1.2
Reescreva como mais
Etapa 2.1.2.8.5.4.1.3
Aplique a propriedade distributiva.
Etapa 2.1.2.8.5.4.2
Fatore o máximo divisor comum de cada grupo.
Toque para ver mais passagens...
Etapa 2.1.2.8.5.4.2.1
Agrupe os dois primeiros termos e os dois últimos termos.
Etapa 2.1.2.8.5.4.2.2
Fatore o máximo divisor comum (MDC) de cada grupo.
Etapa 2.1.2.8.5.4.3
Fatore o polinômio desmembrando o máximo divisor comum, .
Etapa 2.1.2.8.5.5
Substitua todas as ocorrências de por .
Etapa 2.1.2.8.6
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.1.2.8.6.1
Fatore de .
Etapa 2.1.2.8.6.2
Reescreva como .
Etapa 2.1.2.8.6.3
Fatore de .
Etapa 2.1.2.8.6.4
Reescreva como .
Etapa 2.1.2.8.6.5
Fatore de .
Etapa 2.1.2.8.6.6
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.1.2.8.6.6.1
Fatore de .
Etapa 2.1.2.8.6.6.2
Cancele o fator comum.
Etapa 2.1.2.8.6.6.3
Reescreva a expressão.
Etapa 2.1.2.8.7
Multiplique por .
Etapa 2.1.2.8.8
Mova o número negativo para a frente da fração.
Etapa 2.1.3
A segunda derivada de com relação a é .
Etapa 2.2
Defina a segunda derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.2.1
Defina a segunda derivada como igual a .
Etapa 2.2.2
Defina o numerador como igual a zero.
Etapa 2.2.3
Resolva a equação para .
Toque para ver mais passagens...
Etapa 2.2.3.1
Se qualquer fator individual no lado esquerdo da equação for igual a , toda a expressão será igual a .
Etapa 2.2.3.2
Defina como igual a .
Etapa 2.2.3.3
Defina como igual a e resolva para .
Toque para ver mais passagens...
Etapa 2.2.3.3.1
Defina como igual a .
Etapa 2.2.3.3.2
Resolva para .
Toque para ver mais passagens...
Etapa 2.2.3.3.2.1
Some aos dois lados da equação.
Etapa 2.2.3.3.2.2
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 2.2.3.3.2.3
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 2.2.3.3.2.3.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 2.2.3.3.2.3.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 2.2.3.3.2.3.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 2.2.3.4
A solução final são todos os valores que tornam verdadeiro.
Etapa 3
Encontre o domínio de .
Toque para ver mais passagens...
Etapa 3.1
Defina o denominador em como igual a para encontrar onde a expressão está indefinida.
Etapa 3.2
Resolva .
Toque para ver mais passagens...
Etapa 3.2.1
Subtraia dos dois lados da equação.
Etapa 3.2.2
Pegue a raiz especificada de ambos os lados da equação para eliminar o expoente no lado esquerdo.
Etapa 3.2.3
Reescreva como .
Etapa 3.2.4
A solução completa é resultado das partes positiva e negativa da solução.
Toque para ver mais passagens...
Etapa 3.2.4.1
Primeiro, use o valor positivo de para encontrar a primeira solução.
Etapa 3.2.4.2
Depois, use o valor negativo de para encontrar a segunda solução.
Etapa 3.2.4.3
A solução completa é resultado das partes positiva e negativa da solução.
Etapa 3.3
O domínio consiste em números reais apenas.
Notação de intervalo:
Notação de construtor de conjuntos:
Notação de intervalo:
Notação de construtor de conjuntos:
Etapa 4
Crie intervalos em torno dos valores , em que a segunda derivada é zero ou indefinida.
Etapa 5
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Multiplique por .
Etapa 5.2.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 5.2.2.1
Eleve à potência de .
Etapa 5.2.2.2
Some e .
Etapa 5.2.2.3
Eleve à potência de .
Etapa 5.2.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 5.2.3.1
Eleve à potência de .
Etapa 5.2.3.2
Subtraia de .
Etapa 5.2.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 5.2.4.1
Multiplique por .
Etapa 5.2.4.2
Mova o número negativo para a frente da fração.
Etapa 5.2.5
A resposta final é .
Etapa 5.3
O gráfico tem concavidade para cima no intervalo porque é positivo.
Concavidade para cima em , já que é positivo
Concavidade para cima em , já que é positivo
Etapa 6
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Multiplique por .
Etapa 6.2.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 6.2.2.1
Eleve à potência de .
Etapa 6.2.2.2
Some e .
Etapa 6.2.2.3
Eleve à potência de .
Etapa 6.2.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 6.2.3.1
Eleve à potência de .
Etapa 6.2.3.2
Subtraia de .
Etapa 6.2.4
Reduza a expressão cancelando os fatores comuns.
Toque para ver mais passagens...
Etapa 6.2.4.1
Multiplique por .
Etapa 6.2.4.2
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 6.2.4.2.1
Cancele o fator comum.
Etapa 6.2.4.2.2
Reescreva a expressão.
Etapa 6.2.4.3
Multiplique por .
Etapa 6.2.5
A resposta final é .
Etapa 6.3
O gráfico tem concavidade para baixo no intervalo porque é negativo.
Concavidade para baixo em , já que é negativo
Concavidade para baixo em , já que é negativo
Etapa 7
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Multiplique por .
Etapa 7.2.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 7.2.2.1
Um elevado a qualquer potência é um.
Etapa 7.2.2.2
Some e .
Etapa 7.2.2.3
Eleve à potência de .
Etapa 7.2.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 7.2.3.1
Um elevado a qualquer potência é um.
Etapa 7.2.3.2
Subtraia de .
Etapa 7.2.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 7.2.4.1
Multiplique por .
Etapa 7.2.4.2
Divida por .
Etapa 7.2.4.3
Multiplique por .
Etapa 7.2.5
A resposta final é .
Etapa 7.3
O gráfico tem concavidade para cima no intervalo porque é positivo.
Concavidade para cima em , já que é positivo
Concavidade para cima em , já que é positivo
Etapa 8
Substitua qualquer número do intervalo na segunda derivada e avalie para determinar a concavidade.
Toque para ver mais passagens...
Etapa 8.1
Substitua a variável por na expressão.
Etapa 8.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 8.2.1
Multiplique por .
Etapa 8.2.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 8.2.2.1
Eleve à potência de .
Etapa 8.2.2.2
Some e .
Etapa 8.2.2.3
Eleve à potência de .
Etapa 8.2.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 8.2.3.1
Eleve à potência de .
Etapa 8.2.3.2
Subtraia de .
Etapa 8.2.4
Multiplique por .
Etapa 8.2.5
A resposta final é .
Etapa 8.3
O gráfico tem concavidade para baixo no intervalo porque é negativo.
Concavidade para baixo em , já que é negativo
Concavidade para baixo em , já que é negativo
Etapa 9
O gráfico tem concavidade para baixo quando a segunda derivada é negativa e concavidade para cima quando a segunda derivada é positiva.
Concavidade para cima em , já que é positivo
Concavidade para baixo em , já que é negativo
Concavidade para cima em , já que é positivo
Concavidade para baixo em , já que é negativo
Etapa 10