Insira um problema...
Cálculo Exemplos
Etapa 1
Escreva como uma função.
Etapa 2
É possível determinar a função encontrando a integral indefinida da derivada .
Etapa 3
Estabeleça a integral para resolver.
Etapa 4
Etapa 4.1
Decomponha a fração e multiplique pelo denominador comum.
Etapa 4.1.1
Fatore de .
Etapa 4.1.1.1
Fatore de .
Etapa 4.1.1.2
Fatore de .
Etapa 4.1.1.3
Fatore de .
Etapa 4.1.1.4
Multiplique por .
Etapa 4.1.2
Para cada fator no denominador, crie uma fração usando o fator como denominador e um valor desconhecido como numerador. Como o fator no denominador é linear, coloque uma única variável em seu lugar .
Etapa 4.1.3
Multiplique cada fração na equação pelo denominador da expressão original. Nesse caso, o denominador é .
Etapa 4.1.4
Cancele o fator comum de .
Etapa 4.1.4.1
Cancele o fator comum.
Etapa 4.1.4.2
Reescreva a expressão.
Etapa 4.1.5
Cancele o fator comum de .
Etapa 4.1.5.1
Cancele o fator comum.
Etapa 4.1.5.2
Reescreva a expressão.
Etapa 4.1.6
Simplifique cada termo.
Etapa 4.1.6.1
Cancele o fator comum de .
Etapa 4.1.6.1.1
Cancele o fator comum.
Etapa 4.1.6.1.2
Divida por .
Etapa 4.1.6.2
Aplique a propriedade distributiva.
Etapa 4.1.6.3
Mova para a esquerda de .
Etapa 4.1.6.4
Reescreva usando a propriedade comutativa da multiplicação.
Etapa 4.1.6.5
Cancele o fator comum de .
Etapa 4.1.6.5.1
Cancele o fator comum.
Etapa 4.1.6.5.2
Divida por .
Etapa 4.1.7
Simplifique a expressão.
Etapa 4.1.7.1
Mova .
Etapa 4.1.7.2
Reordene e .
Etapa 4.1.7.3
Mova .
Etapa 4.2
Crie equações para as variáveis da fração parcial e use-as para estabelecer um sistema de equações.
Etapa 4.2.1
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes de de cada lado da equação. Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 4.2.2
Para criar uma equação para as variáveis de fração parcial, equacione os coeficientes dos termos que não contêm . Para que a equação seja igual, os coeficientes equivalentes em cada lado da equação devem ser iguais.
Etapa 4.2.3
Monte o sistema de equações para encontrar os coeficientes das frações parciais.
Etapa 4.3
Resolva o sistema de equações.
Etapa 4.3.1
Resolva em .
Etapa 4.3.1.1
Reescreva a equação como .
Etapa 4.3.1.2
Divida cada termo em por e simplifique.
Etapa 4.3.1.2.1
Divida cada termo em por .
Etapa 4.3.1.2.2
Simplifique o lado esquerdo.
Etapa 4.3.1.2.2.1
Cancele o fator comum de .
Etapa 4.3.1.2.2.1.1
Cancele o fator comum.
Etapa 4.3.1.2.2.1.2
Divida por .
Etapa 4.3.2
Substitua todas as ocorrências de por em cada equação.
Etapa 4.3.2.1
Substitua todas as ocorrências de em por .
Etapa 4.3.2.2
Simplifique o lado direito.
Etapa 4.3.2.2.1
Reescreva como .
Etapa 4.3.3
Resolva em .
Etapa 4.3.3.1
Reescreva a equação como .
Etapa 4.3.3.2
Some aos dois lados da equação.
Etapa 4.3.4
Resolva o sistema de equações.
Etapa 4.3.5
Liste todas as soluções.
Etapa 4.4
Substitua cada um dos coeficientes de fração parcial em pelos valores encontrados para e .
Etapa 4.5
Simplifique.
Etapa 4.5.1
Multiplique o numerador pelo inverso do denominador.
Etapa 4.5.2
Multiplique por .
Etapa 4.5.3
Multiplique o numerador pelo inverso do denominador.
Etapa 4.5.4
Multiplique por .
Etapa 5
Divida a integral única em várias integrais.
Etapa 6
Como é constante com relação a , mova para fora da integral.
Etapa 7
A integral de com relação a é .
Etapa 8
Como é constante com relação a , mova para fora da integral.
Etapa 9
Etapa 9.1
Deixe . Encontre .
Etapa 9.1.1
Reescreva.
Etapa 9.1.2
Divida por .
Etapa 9.2
Reescreva o problema usando e .
Etapa 10
Mova o número negativo para a frente da fração.
Etapa 11
Como é constante com relação a , mova para fora da integral.
Etapa 12
A integral de com relação a é .
Etapa 13
Etapa 13.1
Simplifique.
Etapa 13.2
Combine e .
Etapa 14
Substitua todas as ocorrências de por .
Etapa 15
Reordene os termos.
Etapa 16
A resposta é a primitiva da função .