Cálculo Exemplos

Ermittle die Second-Ableitung f(x)=(1-8x)/(8-6x)
Etapa 1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1
Diferencie usando a regra do quociente, que determina que é , em que e .
Etapa 1.2
Diferencie.
Toque para ver mais passagens...
Etapa 1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.3
Some e .
Etapa 1.2.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.5
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.6
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 1.2.6.1
Multiplique por .
Etapa 1.2.6.2
Mova para a esquerda de .
Etapa 1.2.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.8
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.9
Some e .
Etapa 1.2.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.11
Multiplique por .
Etapa 1.2.12
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.13
Multiplique por .
Etapa 1.3
Simplifique.
Toque para ver mais passagens...
Etapa 1.3.1
Aplique a propriedade distributiva.
Etapa 1.3.2
Aplique a propriedade distributiva.
Etapa 1.3.3
Simplifique o numerador.
Toque para ver mais passagens...
Etapa 1.3.3.1
Simplifique cada termo.
Toque para ver mais passagens...
Etapa 1.3.3.1.1
Multiplique por .
Etapa 1.3.3.1.2
Multiplique por .
Etapa 1.3.3.1.3
Multiplique por .
Etapa 1.3.3.1.4
Multiplique por .
Etapa 1.3.3.2
Combine os termos opostos em .
Toque para ver mais passagens...
Etapa 1.3.3.2.1
Subtraia de .
Etapa 1.3.3.2.2
Some e .
Etapa 1.3.3.3
Some e .
Etapa 1.3.4
Mova o número negativo para a frente da fração.
Etapa 1.3.5
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 1.3.5.1
Fatore de .
Toque para ver mais passagens...
Etapa 1.3.5.1.1
Fatore de .
Etapa 1.3.5.1.2
Fatore de .
Etapa 1.3.5.1.3
Fatore de .
Etapa 1.3.5.2
Aplique a regra do produto a .
Etapa 1.3.5.3
Eleve à potência de .
Etapa 1.3.6
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 1.3.6.1
Fatore de .
Etapa 1.3.6.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 1.3.6.2.1
Fatore de .
Etapa 1.3.6.2.2
Cancele o fator comum.
Etapa 1.3.6.2.3
Reescreva a expressão.
Etapa 2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 2.1
Diferencie usando a regra do múltiplo constante.
Toque para ver mais passagens...
Etapa 2.1.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2
Aplique regras básicas de expoentes.
Toque para ver mais passagens...
Etapa 2.1.2.1
Reescreva como .
Etapa 2.1.2.2
Multiplique os expoentes em .
Toque para ver mais passagens...
Etapa 2.1.2.2.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.1.2.2.2
Multiplique por .
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Diferencie.
Toque para ver mais passagens...
Etapa 2.3.1
Multiplique por .
Etapa 2.3.2
Simplifique os termos.
Toque para ver mais passagens...
Etapa 2.3.2.1
Combine e .
Etapa 2.3.2.2
Multiplique por .
Etapa 2.3.2.3
Combine e .
Etapa 2.3.2.4
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.3.2.4.1
Mova para a esquerda de .
Etapa 2.3.2.4.2
Mova para o denominador usando a regra do expoente negativo .
Etapa 2.3.2.5
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 2.3.2.5.1
Fatore de .
Etapa 2.3.2.5.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 2.3.2.5.2.1
Fatore de .
Etapa 2.3.2.5.2.2
Cancele o fator comum.
Etapa 2.3.2.5.2.3
Reescreva a expressão.
Etapa 2.3.3
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.3.4
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.5
Some e .
Etapa 2.3.6
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.3.7
Combine frações.
Toque para ver mais passagens...
Etapa 2.3.7.1
Combine e .
Etapa 2.3.7.2
Simplifique a expressão.
Toque para ver mais passagens...
Etapa 2.3.7.2.1
Multiplique por .
Etapa 2.3.7.2.2
Mova o número negativo para a frente da fração.
Etapa 2.3.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.3.9
Multiplique por .
Etapa 3
A segunda derivada de com relação a é .