Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.3
Substitua todas as ocorrências de por .
Etapa 1.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.3
Combine e .
Etapa 1.4
Combine os numeradores em relação ao denominador comum.
Etapa 1.5
Simplifique o numerador.
Etapa 1.5.1
Multiplique por .
Etapa 1.5.2
Subtraia de .
Etapa 1.6
Combine e .
Etapa 1.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.10
Simplifique a expressão.
Etapa 1.10.1
Some e .
Etapa 1.10.2
Multiplique por .
Etapa 2
Etapa 2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.2.3
Substitua todas as ocorrências de por .
Etapa 2.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 2.4
Combine e .
Etapa 2.5
Combine os numeradores em relação ao denominador comum.
Etapa 2.6
Simplifique o numerador.
Etapa 2.6.1
Multiplique por .
Etapa 2.6.2
Subtraia de .
Etapa 2.7
Combine frações.
Etapa 2.7.1
Mova o número negativo para a frente da fração.
Etapa 2.7.2
Combine e .
Etapa 2.7.3
Mova para o denominador usando a regra do expoente negativo .
Etapa 2.7.4
Multiplique por .
Etapa 2.7.5
Multiplique por .
Etapa 2.8
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.9
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.10
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.11
Simplifique a expressão.
Etapa 2.11.1
Some e .
Etapa 2.11.2
Multiplique por .
Etapa 3
Para encontrar os valores máximo local e mínimo local da função, defina a derivada como igual a e resolva.
Etapa 4
Etapa 4.1
Encontre a primeira derivada.
Etapa 4.1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Etapa 4.1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 4.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.1.3
Substitua todas as ocorrências de por .
Etapa 4.1.2
Para escrever como fração com um denominador comum, multiplique por .
Etapa 4.1.3
Combine e .
Etapa 4.1.4
Combine os numeradores em relação ao denominador comum.
Etapa 4.1.5
Simplifique o numerador.
Etapa 4.1.5.1
Multiplique por .
Etapa 4.1.5.2
Subtraia de .
Etapa 4.1.6
Combine e .
Etapa 4.1.7
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 4.1.8
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 4.1.9
Como é constante em relação a , a derivada de em relação a é .
Etapa 4.1.10
Simplifique a expressão.
Etapa 4.1.10.1
Some e .
Etapa 4.1.10.2
Multiplique por .
Etapa 4.2
A primeira derivada de com relação a é .
Etapa 5
Etapa 5.1
Defina a primeira derivada como igual a .
Etapa 5.2
Defina o numerador como igual a zero.
Etapa 5.3
Resolva a equação para .
Etapa 5.3.1
Divida cada termo em por e simplifique.
Etapa 5.3.1.1
Divida cada termo em por .
Etapa 5.3.1.2
Simplifique o lado esquerdo.
Etapa 5.3.1.2.1
Cancele o fator comum.
Etapa 5.3.1.2.2
Divida por .
Etapa 5.3.1.3
Simplifique o lado direito.
Etapa 5.3.1.3.1
Divida por .
Etapa 5.3.2
Defina como igual a .
Etapa 5.3.3
Some aos dois lados da equação.
Etapa 6
Etapa 6.1
O domínio da expressão consiste em todos os números reais, exceto quando a expressão é indefinida. Nesse caso, não existe um número real que torne a expressão indefinida.
Etapa 7
Pontos críticos para avaliar.
Etapa 8
Avalie a segunda derivada em . Se a segunda derivada for positiva, este será um mínimo local. Se for negativa, será um máximo local.
Etapa 9
Etapa 9.1
Simplifique a expressão.
Etapa 9.1.1
Subtraia de .
Etapa 9.1.2
Reescreva como .
Etapa 9.1.3
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 9.2
Cancele o fator comum de .
Etapa 9.2.1
Cancele o fator comum.
Etapa 9.2.2
Reescreva a expressão.
Etapa 9.3
Simplifique a expressão.
Etapa 9.3.1
Elevar a qualquer potência positiva produz .
Etapa 9.3.2
Multiplique por .
Etapa 9.3.3
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Etapa 9.4
A expressão contém uma divisão por . A expressão é indefinida.
Indefinido
Indefinido
Etapa 10
Etapa 10.1
Divida em intervalos separados em torno dos valores de que tornam a primeira derivada ou indefinida.
Etapa 10.2
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Etapa 10.2.1
Substitua a variável por na expressão.
Etapa 10.2.2
Simplifique o resultado.
Etapa 10.2.2.1
Simplifique o numerador.
Etapa 10.2.2.1.1
Subtraia de .
Etapa 10.2.2.1.2
Reescreva como .
Etapa 10.2.2.1.3
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 10.2.2.1.4
Cancele o fator comum de .
Etapa 10.2.2.1.4.1
Cancele o fator comum.
Etapa 10.2.2.1.4.2
Reescreva a expressão.
Etapa 10.2.2.1.5
Avalie o expoente.
Etapa 10.2.2.2
Simplifique a expressão.
Etapa 10.2.2.2.1
Multiplique por .
Etapa 10.2.2.2.2
Mova o número negativo para a frente da fração.
Etapa 10.2.2.3
A resposta final é .
Etapa 10.3
Substitua qualquer número, como , do intervalo na primeira derivada para verificar se o resultado é negativo ou positivo.
Etapa 10.3.1
Substitua a variável por na expressão.
Etapa 10.3.2
Simplifique o resultado.
Etapa 10.3.2.1
Subtraia de .
Etapa 10.3.2.2
Mova para o denominador usando a regra do expoente negativo .
Etapa 10.3.2.3
Multiplique por somando os expoentes.
Etapa 10.3.2.3.1
Multiplique por .
Etapa 10.3.2.3.1.1
Eleve à potência de .
Etapa 10.3.2.3.1.2
Use a regra da multiplicação de potências para combinar expoentes.
Etapa 10.3.2.3.2
Escreva como uma fração com um denominador comum.
Etapa 10.3.2.3.3
Combine os numeradores em relação ao denominador comum.
Etapa 10.3.2.3.4
Subtraia de .
Etapa 10.3.2.4
A resposta final é .
Etapa 10.4
Como a primeira derivada mudou os sinais de negativo para positivo em torno de , então é um mínimo local.
é um mínimo local
é um mínimo local
Etapa 11