Cálculo Exemplos

Encontre os Pontos de Inflexão f(x)=x+sin(2x)+5
Etapa 1
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 1.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 1.1.1
Diferencie.
Toque para ver mais passagens...
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2
Avalie .
Toque para ver mais passagens...
Etapa 1.1.2.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.1.2.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.1.2.1.2
A derivada de em relação a é .
Etapa 1.1.2.1.3
Substitua todas as ocorrências de por .
Etapa 1.1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.3
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.4
Multiplique por .
Etapa 1.1.2.5
Mova para a esquerda de .
Etapa 1.1.3
Diferencie usando a regra da constante.
Toque para ver mais passagens...
Etapa 1.1.3.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.3.2
Some e .
Etapa 1.2
Encontre a segunda derivada.
Toque para ver mais passagens...
Etapa 1.2.1
Diferencie.
Toque para ver mais passagens...
Etapa 1.2.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.2.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2
Avalie .
Toque para ver mais passagens...
Etapa 1.2.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2.2
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 1.2.2.2.1
Para aplicar a regra da cadeia, defina como .
Etapa 1.2.2.2.2
A derivada de em relação a é .
Etapa 1.2.2.2.3
Substitua todas as ocorrências de por .
Etapa 1.2.2.3
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.2.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.2.2.5
Multiplique por .
Etapa 1.2.2.6
Multiplique por .
Etapa 1.2.2.7
Multiplique por .
Etapa 1.2.3
Subtraia de .
Etapa 1.3
A segunda derivada de com relação a é .
Etapa 2
Defina a segunda derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 2.1
Defina a segunda derivada como igual a .
Etapa 2.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.2.1
Divida cada termo em por .
Etapa 2.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.2.2.1.1
Cancele o fator comum.
Etapa 2.2.2.1.2
Divida por .
Etapa 2.2.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.2.3.1
Divida por .
Etapa 2.3
Obtenha o seno inverso dos dois lados da equação para extrair de dentro do seno.
Etapa 2.4
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.4.1
O valor exato de é .
Etapa 2.5
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.5.1
Divida cada termo em por .
Etapa 2.5.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.5.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.5.2.1.1
Cancele o fator comum.
Etapa 2.5.2.1.2
Divida por .
Etapa 2.5.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 2.5.3.1
Divida por .
Etapa 2.6
A função do seno é positiva no primeiro e no segundo quadrantes. Para encontrar a segunda solução, subtraia o ângulo de referência de para determinar a solução no segundo quadrante.
Etapa 2.7
Resolva .
Toque para ver mais passagens...
Etapa 2.7.1
Simplifique.
Toque para ver mais passagens...
Etapa 2.7.1.1
Multiplique por .
Etapa 2.7.1.2
Some e .
Etapa 2.7.2
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 2.7.2.1
Divida cada termo em por .
Etapa 2.7.2.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 2.7.2.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.7.2.2.1.1
Cancele o fator comum.
Etapa 2.7.2.2.1.2
Divida por .
Etapa 2.8
Encontre o período de .
Toque para ver mais passagens...
Etapa 2.8.1
O período da função pode ser calculado ao usar .
Etapa 2.8.2
Substitua por na fórmula do período.
Etapa 2.8.3
O valor absoluto é a distância entre um número e zero. A distância entre e é .
Etapa 2.8.4
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 2.8.4.1
Cancele o fator comum.
Etapa 2.8.4.2
Divida por .
Etapa 2.9
O período da função é . Portanto, os valores se repetirão a cada radianos nas duas direções.
, para qualquer número inteiro
Etapa 2.10
Consolide as respostas.
, para qualquer número inteiro
, para qualquer número inteiro
Etapa 3
O ponto encontrado ao substituir em é . Ele pode ser um ponto de inflexão.
Etapa 4
Divida em intervalos em torno dos pontos que poderiam ser pontos de inflexão.
Etapa 5
Substitua um valor do intervalo na segunda derivada para determinar se está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 5.1
Substitua a variável por na expressão.
Etapa 5.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 5.2.1
Multiplique por .
Etapa 5.2.2
A resposta final é .
Etapa 5.3
Em , a segunda derivada é . Por ser positiva, a segunda derivada aumenta no intervalo .
Acréscimo em , pois
Acréscimo em , pois
Etapa 6
Substitua um valor do intervalo na segunda derivada para determinar se está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Multiplique por .
Etapa 6.2.2
A resposta final é .
Etapa 6.3
Em , a segunda derivada é . Por ser negativa, a segunda derivada diminui no intervalo .
Decréscimo em , pois
Decréscimo em , pois
Etapa 7
O ponto de inflexão é um ponto em uma curva em que a concavidade muda do sinal de adição para o de subtração ou vice-versa. Neste caso, o ponto de inflexão é .
Etapa 8