Cálculo Exemplos

Encontre Onde é Crescente/Decrescente Usando as Derivadas base do logaritmo 5 de 1+x^2
Etapa 1
Escreva como uma função.
Etapa 2
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 2.1
Encontre a primeira derivada.
Toque para ver mais passagens...
Etapa 2.1.1
Diferencie usando a regra da cadeia, que determina que é , em que e .
Toque para ver mais passagens...
Etapa 2.1.1.1
Para aplicar a regra da cadeia, defina como .
Etapa 2.1.1.2
A derivada de em relação a é .
Etapa 2.1.1.3
Substitua todas as ocorrências de por .
Etapa 2.1.2
Diferencie.
Toque para ver mais passagens...
Etapa 2.1.2.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 2.1.2.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 2.1.2.3
Some e .
Etapa 2.1.2.4
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 2.1.2.5
Combine frações.
Toque para ver mais passagens...
Etapa 2.1.2.5.1
Combine e .
Etapa 2.1.2.5.2
Combine e .
Etapa 2.1.3
Simplifique.
Toque para ver mais passagens...
Etapa 2.1.3.1
Aplique a propriedade distributiva.
Etapa 2.1.3.2
Multiplique por .
Etapa 2.1.3.3
Reordene os termos.
Etapa 2.2
A primeira derivada de com relação a é .
Etapa 3
Defina a primeira derivada como igual a e resolva a equação .
Toque para ver mais passagens...
Etapa 3.1
Defina a primeira derivada como igual a .
Etapa 3.2
Defina o numerador como igual a zero.
Etapa 3.3
Divida cada termo em por e simplifique.
Toque para ver mais passagens...
Etapa 3.3.1
Divida cada termo em por .
Etapa 3.3.2
Simplifique o lado esquerdo.
Toque para ver mais passagens...
Etapa 3.3.2.1
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 3.3.2.1.1
Cancele o fator comum.
Etapa 3.3.2.1.2
Divida por .
Etapa 3.3.3
Simplifique o lado direito.
Toque para ver mais passagens...
Etapa 3.3.3.1
Divida por .
Etapa 4
Os valores, que tornam a derivada igual a , são .
Etapa 5
Depois de encontrar o ponto que torna a derivada igual a ou indefinida, o intervalo para verificar onde está aumentando e onde está diminuindo é .
Etapa 6
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 6.1
Substitua a variável por na expressão.
Etapa 6.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 6.2.1
Multiplique por .
Etapa 6.2.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 6.2.2.1
Eleve à potência de .
Etapa 6.2.2.2
Multiplique por .
Etapa 6.2.2.3
Use a propriedade dos logaritmos do produto, .
Etapa 6.2.2.4
Multiplique por .
Etapa 6.2.3
Reescreva como .
Etapa 6.2.4
Expanda movendo para fora do logaritmo.
Etapa 6.2.5
Cancele o fator comum de e .
Toque para ver mais passagens...
Etapa 6.2.5.1
Fatore de .
Etapa 6.2.5.2
Cancele os fatores comuns.
Toque para ver mais passagens...
Etapa 6.2.5.2.1
Fatore de .
Etapa 6.2.5.2.2
Cancele o fator comum.
Etapa 6.2.5.2.3
Reescreva a expressão.
Etapa 6.2.6
Mova o número negativo para a frente da fração.
Etapa 6.2.7
A resposta final é .
Etapa 6.3
Em , a derivada é . Por ser negativa, a função diminui em .
Decréscimo em , pois
Decréscimo em , pois
Etapa 7
Substitua um valor do intervalo na derivada para determinar se a função está aumentando ou diminuindo.
Toque para ver mais passagens...
Etapa 7.1
Substitua a variável por na expressão.
Etapa 7.2
Simplifique o resultado.
Toque para ver mais passagens...
Etapa 7.2.1
Multiplique por .
Etapa 7.2.2
Simplifique o denominador.
Toque para ver mais passagens...
Etapa 7.2.2.1
Um elevado a qualquer potência é um.
Etapa 7.2.2.2
Multiplique por .
Etapa 7.2.2.3
Use a propriedade dos logaritmos do produto, .
Etapa 7.2.2.4
Multiplique por .
Etapa 7.2.3
Reescreva como .
Etapa 7.2.4
Expanda movendo para fora do logaritmo.
Etapa 7.2.5
Cancele o fator comum de .
Toque para ver mais passagens...
Etapa 7.2.5.1
Cancele o fator comum.
Etapa 7.2.5.2
Reescreva a expressão.
Etapa 7.2.6
A resposta final é .
Etapa 7.3
Em , a derivada é . Por ser positiva, a função aumenta em .
Acréscimo em , pois
Acréscimo em , pois
Etapa 8
Liste os intervalos em que a função é crescente e decrescente.
Acréscimo em:
Decréscimo em:
Etapa 9