Insira um problema...
Cálculo Exemplos
Etapa 1
Etapa 1.1
Encontre a primeira derivada.
Etapa 1.1.1
Diferencie.
Etapa 1.1.1.1
De acordo com a regra da soma, a derivada de com relação a é .
Etapa 1.1.1.2
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2
Avalie .
Etapa 1.1.2.1
Como é constante em relação a , a derivada de em relação a é .
Etapa 1.1.2.2
Diferencie usando a regra da multiplicação de potências, que determina que é , em que .
Etapa 1.1.2.3
Para escrever como fração com um denominador comum, multiplique por .
Etapa 1.1.2.4
Combine e .
Etapa 1.1.2.5
Combine os numeradores em relação ao denominador comum.
Etapa 1.1.2.6
Simplifique o numerador.
Etapa 1.1.2.6.1
Multiplique por .
Etapa 1.1.2.6.2
Subtraia de .
Etapa 1.1.2.7
Combine e .
Etapa 1.1.3
Subtraia de .
Etapa 1.2
A primeira derivada de com relação a é .
Etapa 2
Etapa 2.1
Defina a primeira derivada como igual a .
Etapa 2.2
Defina o numerador como igual a zero.
Etapa 2.3
Resolva a equação para .
Etapa 2.3.1
Divida cada termo em por e simplifique.
Etapa 2.3.1.1
Divida cada termo em por .
Etapa 2.3.1.2
Simplifique o lado esquerdo.
Etapa 2.3.1.2.1
Cancele o fator comum.
Etapa 2.3.1.2.2
Divida por .
Etapa 2.3.1.3
Simplifique o lado direito.
Etapa 2.3.1.3.1
Divida por .
Etapa 2.3.2
Eleve cada lado da equação à potência de para eliminar o expoente fracionário no lado esquerdo.
Etapa 2.3.3
Simplifique o expoente.
Etapa 2.3.3.1
Simplifique o lado esquerdo.
Etapa 2.3.3.1.1
Simplifique .
Etapa 2.3.3.1.1.1
Multiplique os expoentes em .
Etapa 2.3.3.1.1.1.1
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 2.3.3.1.1.1.2
Cancele o fator comum de .
Etapa 2.3.3.1.1.1.2.1
Cancele o fator comum.
Etapa 2.3.3.1.1.1.2.2
Reescreva a expressão.
Etapa 2.3.3.1.1.2
Simplifique.
Etapa 2.3.3.2
Simplifique o lado direito.
Etapa 2.3.3.2.1
Elevar a qualquer potência positiva produz .
Etapa 3
Etapa 3.1
Converta expressões com expoentes fracionários em radicais.
Etapa 3.1.1
Aplique a regra para reescrever a exponenciação como um radical.
Etapa 3.1.2
Qualquer número elevado a é a própria base.
Etapa 3.2
Defina o radicando em como menor do que para encontrar onde a expressão está indefinida.
Etapa 3.3
A equação é indefinida quando o denominador é igual a , o argumento de uma raiz quadrada é menor do que ou o argumento de um logaritmo é menor do que ou igual a .
Etapa 4
Etapa 4.1
Avalie em .
Etapa 4.1.1
Substitua por .
Etapa 4.1.2
Simplifique.
Etapa 4.1.2.1
Simplifique cada termo.
Etapa 4.1.2.1.1
Reescreva como .
Etapa 4.1.2.1.2
Aplique a regra da multiplicação de potências e multiplique os expoentes, .
Etapa 4.1.2.1.3
Cancele o fator comum de .
Etapa 4.1.2.1.3.1
Cancele o fator comum.
Etapa 4.1.2.1.3.2
Reescreva a expressão.
Etapa 4.1.2.1.4
Elevar a qualquer potência positiva produz .
Etapa 4.1.2.1.5
Multiplique por .
Etapa 4.1.2.2
Some e .
Etapa 4.2
Liste todos os pontos.
Etapa 5